Supporting Information

Construction of C(sp²)–S and C(sp²)–Se Bonds *via* Silver(I) -Mediated Coupling Reaction of Heterocyclic Ketene Aminals with Diaryl Dichalcogenides

Xiu-Yang Jiang,^[a] Zhi-Cheng Liu,^[a] Li Fang,^[a] Sheng-Jiao Yan^{*[a]} and Jun Lin^{*[a,b]}

^a Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.

^b State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.

*E-mail: yansj@ynu.edu.cn or linjun@ynu.edu.cn Fax: (+86)-871-65033215; phone: (+86)-871-65033215

Table of Contents

GeneralInformation ······S2
General Procedure for the Preparation of compounds 3–5 ······S2
Analytic Data for the Products
Constal V man standard dia dia angle 2 - 621
Crystal X-ray structure and packing diagrams of compound 3g ···································
NMR spectra of compounds 3-5 ······S25
References and Notes ······S121

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 or DRX400, chemical shifts (δ) are expressed in ppm, and J values are given in Hz, and deuterated CDCl₃ was used as solvent. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agilent LC/Msd TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Compounds 2 were prepared according to the literature.¹

General Procedure for the Preparation of Compounds 3–5

To a 25 ml round-bottom flask, HKAs 1 (1 mmol), 1,2-diphenyldiselane 2 (1 mmol), AgOAc (1 mmol) in dioxane (15 mL) were added. The resulting mixture was heated to reflux and stirred until all starting diphenyldiselane was consumed, as evidenced by TLC. After cooling to room temperature, the solid AgOAc was removed by filtration. The organic layer was then concentrated under reduced pressure to yield crude product. The crude compound was then purified by recrystallization with ethyl acetate and petroleum to afford compounds 3-5 as a white solid.

Analytic Data for the Products

2-(Imidazolidin-2-ylidene)-1-phenyl-2-(phenylthio)ethanone (3a)

White solid, yield 94%; Mp 202–204 °C; IR (KBr): 3194, 1573, 1482, 1373, 1299, 735 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 3.53 (t, *J* = 8.8 Hz, 2H, NCH₂), 3.88 (t, *J* = 8.8 Hz, 2H, NCH₂), 5.78 (br, 1H, NH), 7.06–7.39 (m, ArH, 10H), 9.91 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 45.8, 76.1, 124.7, 125.0, 127.4, 127.7, 129.1, 129.3, 141.0, 142.6, 168.7, 194.1; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₆N₂NaOS [(M+Na⁺)], 319.0876; found, 319.0874.

2-(Imidazolidin-2-ylidene)-1-(4-methoxyphenyl)-2-(phenylthio)ethanone (3b)

White solid, yield 97%; mp 176–177 °C; IR (KBr): 3366, 3269, 1576, 1369, 1241, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 3.57 (t, *J* = 8.9 Hz, 2H, NCH₂), 3.75 (s, 3H, CH₃), 3.90 (t, *J* = 8.9 Hz, 2H, NCH₂), 5.72 (br, 1H, NH), 6.74 (t, *J* = 8.6 Hz, 2H, ArH), 7.06–7.26 (m, 5H, ArH), 7.45 (t, *J* = 8.6 Hz, 2H, ArH), 9.95 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 45.8, 55.6, 75.6, 112.9, 124.6, 125.0, 129.3, 129.6, 134.9, 141.0, 160.6, 168.9, 193.2; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₈N₂NaO₂S [(M+Na⁺)], 349.0981; found, 349.0971.

2-(Imidazolidin-2-ylidene)-2-(phenylthio)-1-(*p*-tolyl)ethanone (**3c**)

White solid, yield 94%; mp 213–214 °C; IR (KBr): 3416, 3285, 1579, 1531, 1365, 1298, 744 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 2.28 (s, 3H, CH₃), 3.57 (t, *J* = 8.8 Hz, 2H, NCH₂), 3.91 (t, *J* = 8.8 Hz, 2H, NCH₂), 5.72 (br, 1H, NH), 7.02 (d, *J* = 7.8 Hz, 2H, ArH), 7.06–7.33 (m, ArH, 7H), 9.94 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 21.8, 42.6,

45.8, 75.9, 124.7, 124.9, 127.5, 128.4, 129.3, 139.1, 139.7, 141.0, 168.7, 194.1; HRMS (TOF ES⁺): m/z calcd for $C_{18}H_{18}N_2NaOS$ [(M+Na⁺)], 333.1032; found, 333.1027.

1-(4-Fluorophenyl)-2-(imidazolidin-2-ylidene)-2-(phenylthio)ethanone (3d)

White solid, yield 93%; mp 182–183 °C; IR (KBr): 3305, 1580, 1532, 1370, 1303, 743 cm⁻¹; ¹H NMR (500MHz,CDCl₃): δ = 3.50–3.57 (m, 2H, NCH₂), 3.85–3.89 (m, 2H, NCH₂), 5.80 (br, 1H, NH), 6.84–7.41 (m, 9H, ArH), 9.86 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) : δ = 42.6, 45.8, 75.9, 114.5 (d, *J* = 20.0 Hz), 124.6, 125.1, 129.4, 129.7, 138.6, 140.7, 163.4 (d, *J* = 245.0 Hz), 168.7, 192.7; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₅FN₂NaOS [(M+Na⁺)], 337.0781; found, 337.0783.

1-(4-Chlorophenyl)-2-(imidazolidin-2-ylidene)-2-(phenylthio)ethanone (3e)

White solid, yield 89%; mp 200–202 °C; IR (KBr): 3413, 3267, 1579, 1532, 1370, 1306, 742 cm⁻¹; ¹H NMR (500 MHz,CDCl₃): δ = 3.56 (t, *J* = 8.9 Hz, 2H, NCH₂), 3.90 (t, *J* = 8.9 Hz, 2H, NCH₂), 5.80 (br, 1H, NH), 7.06–7.34 (m, 9H, ArH), 9.85 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 45.8, 76.0, 124.6, 125.2, 127.9, 129.0, 129.4, 134.9, 140.6, 140.9, 168.7, 192.6; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₅ClN₂NaOS [(M+Na⁺)], 353.0486; found, 353.0486.

1-(2-Chlorophenyl)-2-(imidazolidin-2-ylidene)-2-(phenylthio)ethanone (3f)

White solid, yield 85%; mp 194–195 °C; IR (KBr): 3193, 1582, 1540, 1482, 1381, 1299, 747 cm⁻¹; ¹H NMR (500 MHz,CDCl₃): δ = 3.58 (t, *J* = 8.9 Hz, 2H, NCH₂), 3.92 (t, *J* = 8.9 Hz, 2H, NCH₂), 5.80 (br, 1H, NH), 7.05–7.30 (m, 9H, ArH), 9.74 (br, 1H, NH); ¹³C

NMR (125 MHz, CDCl₃): δ = 42.5, 45.7, 125.1, 126.3, 127.6, 129.0, 129.5, 130.6, 140.2, 142.2, 168.0, 192.1; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₅ClN₂NaOS [(M+Na⁺)], 353.0486; found, 353.0485.

2-(Imidazolidin-2-ylidene)-2-((4-methoxyphenyl)selanyl)-1-phenylethanone (3g)

White solid, yield 94%, mp 218–220 °C; IR (KBr): 3403, 3304, 1589, 1533, 1482, 1367, 1298, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 3.55 (t, *J* = 8.9 Hz, 2H, NCH₂), 3.70 (s, 3H, CH₃), 3.88 (t, *J* = 8.9 Hz, 2H, NCH₂), 5.82 (br, 1H, NH), 6.78–7.40 (m, 9H, ArH), 9.87 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 45.8, 55.8, 115.1, 126.4, 127.1, 127.4, 127.7, 129.1, 131.6, 142.7, 157.9, 168.8, 194.1; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₉N₂O₂S [(M+H⁺)], 327.1162; found, 327.1168.

2-(Imidazolidin-2-ylidene)-1-phenyl-2-(*p*-tolylselanyl)ethanone (**3h**)

White solid, yield 95%; mp 196–197 °C; IR (KBr): 3424, 3318, 1578, 1359, 1298, 702 cm⁻¹; ¹H NMR (500 MHz,CDCl₃): δ = 2.29 (s, 3H, ArCH₃), 3.49–3.53 (m, 2H, NCH₂), 3.85–3.88 (m, 2H, NCH₂), 5.77 (br, 1H, NH), 7.01–7.41 (m, 9H, ArH), 9.91 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 21.3, 42.6, 45.8, 76.4, 124.8, 127.4, 127.7, 129.1, 130.1, 134.7, 137.4, 142.7, 168.7, 194.0; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₉N₂OS [(M+H⁺)], 311.1213; found, 311.1216.

2-((4-Chlorophenyl)selanyl)-2-(imidazolidin-2-ylidene)-1-phenylethanone (3i)

White solid, yield 90%; mp 211–213 °C; IR (KBr): 3200, 1581, 1377, 1299, 705 cm⁻¹; ¹H NMR (500 MHz,CDCl₃): δ = 3.58 (t, *J* = 8.7 Hz, 2H, NCH₂), 3.91 (t, *J* = 8.7 Hz, 2H, NCH₂), 5.73 (br, 1H, NH), 7.03–7.37 (m, 9H, ArH), 9.90 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 45.8, 75.8, 126.0, 127.3, 127.7, 129.2, 129.3, 130.7, 139.6, 142.4, 168.6, 194.2; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₆ClN₂OS [(M+H⁺)], 331.0666; found, 331.0663.

2-((3,5-Dichlorophenyl)selanyl)-2-(imidazolidin-2-ylidene)-1-phenylethanone (3j)

White solid, yield 84%; mp 213–214 °C; IR (KBr): 3208, 1575, 1377, 1300, 793 cm⁻¹; ¹H NMR (500 MHz,CDCl₃): δ = 3.55–3.61 (m, 2 H, NCH₂), 3.89–3.94 (m, 2 H, NCH₂), 5.76 (br, 1 H, NH), 6.95–7.34 (m, 8H, ArH), 9.89 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 45.8, 74.7, 122.7, 125.2, 127.2, 127.8, 129.3, 135.8, 142.2, 145.3, 168.3, 194.1; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₅Cl₂N₂OS [(M+H⁺)], 365.0277; found, 365.0258.

2-((3-Fluorophenyl)selanyl)-2-(imidazolidin-2-ylidene)-1-phenylethanone (3k)

White solid, yield 88%; mp 204–205 °C; IR (KBr): 3423, 3305, 1581, 1367, 1299, 733 cm⁻¹; ¹H NMR (500 MHz,CDCl3): δ = 3.53 (t, *J* = 8.8 Hz, 2 H, NCH₂), 3.88 (t, *J* = 8.8 Hz, 2 H, NCH₂), 5.79 (br, 1 H, NH), 6.73–7.36 (m, 9H, ArH), 9.89 (br, 1 H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 45.8, 75.5, 111.5 (d, *J* = 23.7Hz), 111.9 (d, *J* = 21.3 Hz), 112.0, 120.3, 127.3, 127.8, 129.2, 130.6, 144.0, 163.2 (d, *J* = 245.0Hz), 168.5, 194.1; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₆FN₂OS [(M+H⁺)], 315.0962; found, 315.0965.

2-(Imidazolidin-2-ylidene)-1-phenyl-2-(phenylselanyl)ethanone (31)

White solid, yield 91%; mp 161–163 °C; IR (KBr): 3409, 3310, 1573, 1368, 1297, 728 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 3.48–3.52 (m, 2H, NCH₂), 3.86–3.90 (m, 2H, NCH₂), 5.78 (br, 1H, NH), 7.11–7.34 (m, 10H, ArH), 9.98 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.5, 46.0, 73.9, 125.8, 127.3, 127.5, 127.6, 128.9, 129.5, 135.7, 143.7, 168.5, 194.2; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₆N₂NaOSe [(M+Na⁺)], 367.0320; found, 367.0315.

2-(Imidazolidin-2-ylidene)-1-(4-methoxyphenyl)-2-(phenylselanyl)ethanone (3m)

White solid, yield 93%; mp 144–146 °C; IR (KBr): 3309, 1603, 1347, 818, 737 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 3.57–3.61 (m, 2H, NCH₂), 3.78 (s, 3H, OCH₃), 3.93–3.96 (m, 2H, NCH₂), 5.77 (br, 1H, NH), 6.75–7.43 (m, 9H, ArH), 10.04 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 46.0, 55.6, 73.5, 112.9, 125.8, 127.4, 129.5, 129.6, 135.8, 135.9, 160.5, 168.7, 193.5; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₉N₂O₂Se [(M+H⁺)] 375.0606; found, 375.0601.

2-(Imidazolidin-2-ylidene)-2-(phenylselanyl)-1-(*p*-tolyl)ethanone (**3n**)

White solid, yield 91%; mp: 205–207 °C; IR (KBr): 3391, 3252, 1572, 1529, 1366, 1300, 733 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 2.12 (s, ArCH₃), 3.55–3.66 (m, 2H, NCH₂), 3.88–3.95 (m, 2H, NCH₂), 5.74 (br, 1H, NH), 6.74 (d, *J* = 8.6 Hz, 2H, ArH), 7.12–7.27 (m, 5H, ArH), 7.39 (d, *J* = 8.6 Hz, 2H, ArH), 10.02 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.6, 46.0, 55.6, 67.5, 112.8, 125.8, 127.4, 129.5, 129.6, 135.8, 135.9, 160.5, 168.7, 193.5; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₉Na₂OSe [(M+H⁺)], 359.0657; found, 359.0661.

1-(4-Fluorophenyl)-2-(imidazolidin-2-ylidene)-2-(phenylselanyl)ethanone (30)

White solid, yield 87%; mp 167–169 °C; IR (KBr): 3412, 3312, 1575, 1525, 1367, 1298, 726 cm⁻¹; ¹H NMR (500 MHz,CDCl₃): δ = 3.53–3.58 (m, 2H, NCH₂), 3.90–3.94 (m, 2H, NCH₂), 5.81 (br, 1H, NH), 6.85–6.90 (m, 2H, ArH), 7.14–7.15 (m, 1H, ArH), 7.22–7.37 (m, 6H, ArH), 9.96 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.5, 46.0, 73.7, 114.5 (d, *J* = 20.0 Hz), 126.0, 127.4, 129.6, 129.6, 135.5, 139.6, 163.2 (d, *J* = 246.3 Hz), 168.6, 192.9; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₆FN₂OSe [(M+H⁺)], 363.0406;found, 363.0412.

1-(4-Chlorophenyl)-2-(imidazolidin-2-ylidene)-2-(phenylselanyl)ethanone (3p)

White solid, yield 88%; mp 184–186 °C; IR (KBr): 3405, 3263, 1576, 1528, 1369, 1305, 736 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 3.56–3.60 (m, 2H, NCH₂), 3.91–3.96 (m, 2H, NCH₂), 5.77 (br, 1H, NH), 7.13–7.28 (m, 9H, ArH), 9.95 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 42.5, 46.0, 73.7, 126.0, 127.3, 127.8, 128.9, 129.6, 134.7, 135.4, 141.9, 168.6, 192.8; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₆ClN₂OSe [(M+H⁺)], 379.0111; found, 379.0103.

2-(nitro(phenylthio)methylene)imidazolidine (3q)

White solid, yield 88%; mp 163.5–164 °C; IR (KBr): 3350, 3256, 1576, 1392, 1335, 738 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 3.75–3.79 (m, 2H, NCH₂), 3.95–4.00 (m, 2H, NCH₂), 5.83 (br, 1H, NH), 7.13–7.17 (m, 3H, ArH), 7.24–7.28 (m, 2H, ArH), 8.83(br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 43.1, 45.6, 98.4, 125.6, 125.9, 129.1, 136.1, 163.3; HRMS (TOF ES⁺): m/z calcd for C₁₀H₁₁N₃NaO₂S [(M+Na⁺)], 260.0464;found, 260.0462.

1-Phenyl-2-(phenylthio)-2-(tetrahydropyrimdin-2(1*H*)-ylidene)ethanone (4a)

White solid, yield 95%; mp 167–1689 °C; IR (KBr): 3352, 3279, 1586, 1344, 1205, 742 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.79$ –1.82 (m, 2H, NCH₂), 3.27–3.43 (m, 4H, NCH₂), 6.49 (br, 1H, NH), 7.04–7.08 (m, 3H, ArH), 7.15–7.18 (m, 4H, ArH), 7.24–7.28 (m, 2H, ArH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.4$, 38.8, 39.5, 78.4, 124.7, 125.0, 126.8, 127.7, 128.5, 129.2, 141.0, 143.9, 160.8, 193.0; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₉N₂OS [(M+H⁺)], 311.1213; found, 211.1209.

1-(4-Methoxyphenyl)-2-(phenylthio)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanone (**4b**)

White solid, yield 98%; mp 177–178 °C; IR (KBr): 3364, 3050, 1585, 1344, 1241, 735 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.93–1.96 (m, 2H, CH₂), 3.30–3.35 (m, 2H, NCH₂), 3.43–3.49 (m, 2H, NCH₂), 3.74 (s, 3H, OCH₃), 6.49 (br, 1H, NH), 6.71 (d, *J* = 7.3 Hz, 2H, ArH), 7.08–7.26 (m, 5H, ArH), 7.33 (d, *J* = 7.3 Hz, 2H, ArH), 12.05 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 38.8, 39.5, 55.5, 112.9, 124.6, 125.0, 128.9, 129.3, 136.3, 141.1, 160.0, 160.9, 192.4; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₁N₂O₂S [(M+H⁺)], 341.1318; found, 341.1316.

2-(Phenylthio)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-1-(*p*-tolyl)ethanone (**4c**)

White solid, yield 96%; mp 175–177 °C; IR (KBr): 3330, 3052, 1584, 1339, 1164, 746 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.88–1.92 (m, 2H, NCH₂), 2.26 (s, 3H, ArCH₃), 3.25–3.29 (m, 2H, NCH₂), 3.40–3.47 (m, 2H, NCH₂), 6.48 (br, 1H, NH), 6.98 (d, *J* = 7.6 Hz, 2H, ArH), 6.97–7.12 (m, 3H, ArH), 7.22–7.25 (m, 4H, ArH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 21.8, 38.8, 39.5, 78.2, 124.6, 125.0, 127.0, 128.3, 129.2, 138.3, 141.1,

160.8, 193.0; HRMS (TOF ES⁺): m/z calcd for $C_{19}H_{21}N_2OS$, $[(M+H^+)]$, 325.1369; found, 325.1365.

1-(4-Fluorophenyl)-2-(phenylthio)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanone (**4d**)

White solid, yield 92%; mp 122–124 °C; IR (KBr): 3322, 3060, 1586, 1343, 1210, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.93–1.99 (m, 2H, CH₂), 3.39–3.43 (m, 4H, NCH₂), 6.51 (br, 1H, NH), 6.83–7.32 (m, 9H, ArH), 11.92 (br, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): δ = 20.0, 39.0, 39.0, 77.9, 114.1 (d, *J* = 26.3 Hz), 124.2, 124.7, 128.6 (d, *J* = 8.0 Hz), 128.9, 139.4, 140.3, 160.4, 162.5 (d, *J* = 245.0 Hz), 191.3; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₇FN₂NaOS [(M+Na⁺)], 351.0938; found, 351.0637.

1-(4-Chlorophenyl)-2-(phenylthio)-2-(tetrahydropyrimidin-2(1H)-ylidene)ethanone (4e)

White solid, yield 90%; mp 180–181 °C; IR (KBr): 330, 3052, 1584, 1339, 1164, 746 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.95-1.98$ (m, 2H, CH₂), 3.39–3.44 (m, 4H, NCH₂), 6.52 (br, 1H, NH), 7.07–7.48 (m, 9H, ArH), 11.85 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.4$, 39.1, 39.1, 78.5, 124.6, 125.2, 127.9, 128.5, 129.3, 134.2, 140.6, 142.2, 160.8, 191.6; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₇ClN₂NaOS [(M+Na⁺)], 367.0642; found, 367.0637.

1-(2-Chlorophenyl)-2-(phenylthio)-2-(tetrahydropyrimidin-2(1H)-ylidene)ethanone (4f)

White solid, yield 87%; mp 163–165 °C; IR (KBr): 3261, 1593, 1341, 1210, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.95-1.99$ (m, 2H, CH₂), 3.38–3.44 (m, 4H, NCH₂), 7.00–7.28 (m, 9H, ArH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.9$, 38.7, 38.7, 79.5, 124.5,

124.7, 125.9, 126.9, 128.4, 128.6, 129.1, 130.1, 139.7, 142.4, 160.0, 189.9; HRMS (TOF ES^+): m/z calcd for $C_{18}H_{17}ClN_2NaOS$ [(M+Na⁺)], 367.0642; found, 367.0635.

2-((4-Methoxyphenyl)selanyl)-1-phenyl-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanone (**4g**)

White solid, yield 95%; mp 174–176 °C; IR (KBr): 3368, 3187, 1592, 1354, 1232, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.93–1.96 (m, 2H, CH₂), 3.35–3.45 (m, 4H, NCH₂), 3.76 (s, 3H, OCH₃), 6.56 (br, 1H, NH), 6.78–7.31 (m, 9H, ArH), 11.93 (br, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): δ = 20.1, 38.9, 38.9, 55.5, 79.2, 114.7, 125.8, 126.6, 127.3, 128.1, 131.4, 143.6, 157.5, 160.5, 192.6; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₁N₂O₂S [(M+H⁺)], 341.1318; found, 341.1319.

1-Phenyl-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-2-(*p*-tolylselanyl)ethanone (**4h**)

White solid, yield 96%; mp 213–214 °C; IR (KBr): 3369, 1593, 1342, 1208, 800 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.94–1.97 (m, 2H, CH₂), 2.29 (s, 3H, ArCH₃), 3.31–3.34 (m, 2H, NCH₂), 3.45–3.49 (m, 2H, NCH₂), 6.51 (br, 1H, NH), 6.99–7.32 (m, 9H, ArH), 11.97 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 21.3, 38.8, 39.5, 78.7, 124.7, 126.9, 127.6, 128.4, 130.0, 134.7, 137.4, 143.9, 160.8, 193.0; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₁N₂OS [(M+H⁺)], 325.1369; found, 325.1364.

2-((4-Chlorophenyl)selanyl)-1-phenyl-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanone (**4i**)

White solid, yield 93%; mp 210–211 °C; IR (KBr): 3360, 1588, 1344, 1210, 809 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.93–1.96 (m, 2H, CH₂), 3.33–3.36 (m, 2H, NCH₂), 3.44–3.47 (m, 2H, NCH₂), 6.43 (br, 1H, NH), 7.00–7.27 (m, 9H, ArH), 11.89 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 38.8, 39.5, 78.1, 125.9, 126.7, 127.7, 128.6, 129.3, 130.7, 139.6, 143.7, 160.7, 193.1; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₈ClN₂OS [(M+H⁺)], 345.0823, found, 345.0829.

2-((3,5-Dichlorophenyl)selanyl)-1-phenyl-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanon e (**4j**)

White solid, yield 85%; mp 223–225 °C; IR (KBr): 3276, 3067, 1596, 1334, 1214, 786 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.96–2.01 (m, 2H, CH₂), 3.34–3.38 (m, 2H, NCH₂), 3.46–3.50 (m, 2H, NCH₂), 6.35 (br, 1H, NH), 6.94–7.27 (m, 8H, ArH), 11.89 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.3, 38.8, 39.6, 122.7, 125.2, 126.7, 127.8, 128.7, 135.8, 143.5, 145.3, 160.5, 193.4; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₇Cl₂N₂OS [(M+H⁺)], 379.0433; found, 379.0437.

2-((4-Fluorophenyl)selanyl)-1-phenyl-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanone (**4**k)

White solid, yield 92%; mp 181–183 °C; IR (KBr): 3283, 1590, 1342, 1210, 780 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.95–1.98 (m, 2H, CH₂), 3.32–3.36 (m, 2H, NCH₂), 3.67–3.72 (m, 2H, NCH₂), 6.43 (br, 1H, NH), 6.73–7.29 (m, 9H, ArH), 11.93 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 38.8, 39.5, 111.5 (d, *J* = 23.8 Hz), 112.0 (d,

J = 21.3 Hz), 120.3, 123.1, 126.8, 127.7, 128.6, 130.5, 143.9, 160.7, 163.6 (d, J = 246.3 Hz), 164.8, 193.2; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₈FN₂OS [(M+H⁺)], 329.1118; found, 329.1118.

1-Phenyl-2-(phenylselanyl)-2-(tetrahydropyrimidin-2(1H)-ylidene)ethanone (4I)

White solid, yield 92%; mp 162–164 °C; IR (KBr): 3353, 1587, 1343, 741 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.94–1.98 (m, 2H, CH₂), 3.32–3.37 (m, 2H, NCH₂), 3.46–3.50 (m, 2H, NCH₂), 6.57 (br, ¹H, NH), 7.15–7.31 (m, 10H, ArH), 12.12 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.0, 38.5, 39.2, 77.8, 125.3, 126.3, 126.8, 127.1, 127.7, 129.0, 135.3, 144.6, 160.1, 192.6; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₉N₂OSe [(M+H⁺)], 359.0657, found, 359.0668.

1-(4-Methoxyphenyl)-2-(phenylselanyl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanone (**4m**)

White solid, yield 95%; mp 154–156 °C; IR (KBr): 3353, 1581, 1344, 1240, 799 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.90-1.95$ (m, 2H, CH₂), 3.33–3.45 (m, 4H, NCH₂), 3.73 (s, 3H, OCH₃), 6.53 (br, 1H, NH), 6.69–7.29 (m, 9H, ArH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.5$, 39.2, 39.8, 55.5, 112.8, 125.8, 127.3, 128.8, 129.5, 135.9, 137.6, 159.9, 160.8, 192.5; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₁N₂O₂Se [(M+H⁺)], 389.0763; found, 389.0768.

2-(Phenylselanyl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-1-(*p*-tolyl)ethanone (**4n**)

White solid, yield 94%; mp 157–159 °C; IR (KBr): 3363, 3325, 1582, 1341, 1207, 742 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.94-1.97$ (m, 2H, CH₂), 2.31 (s, 3H, ArCH₃), 3.34–3.47 (m, 4H, NCH₂), 6.56 (br, 1H, NH), 7.01–7.30 (m, 9H, ArH), 12.17 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.5$, 21.8, 39.0, 39.7, 78.1, 125.8, 126.9, 127.3, 128.3, 129.5, 135.9, 138.0, 142.2, 160.7, 193.2; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₁N₂OSe [(M+H⁺)], 373.0814; found, 373.0817.

1-(4-Fluorophenyl)-2-(phenylselanyl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanone (**40**)

White solid, yield 90%; mp 139–140 °C; IR (KBr): 3322, 1582, 1346, 1210, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.93–1.98 (m, 2H, CH₂), 3.40–3.47 (m, 4H, NCH₂), 6.59 (br, 1H, NH), 6.85–7.30 (m, 9H, ArH), 12.07 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 39.6, 40.9, 78.5, 114.4 (d, *J* = 21.3 Hz), 125.9, 127.2, 128.9, 129.6, 135.6, 141.1, 160.7, 163.8, 191.8; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₈FN₂OSe [(M+H⁺)], 377.0563; found, 377.0565.

1-(4-Chlorophenyl)-2-(phenylselanyl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethanone (**4p**)

White solid, yield 86%; mp 176–177 °C; IR (KBr): 3319, 3057, 1581, 1345, 1205, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.91-1.94$ (m, 2H, CH₂), 3.36–3.41 (m, 4H, NCH₂), 6.58 (br, 1H, NH), 7.12–7.25 (m, 9H, ArH), 11.98 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.4$, 39.4, 39.4, 78.3, 126.0, 127.2, 127.8, 128.4, 129.6, 133.9, 135.5, 143.4, 160.6, 191.6; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₈ClN₂OSe [(M+H⁺)], 393.0265; found, 393.0267.

1-(2-Chlorophenyl)-2-(imidazolidin-2-ylidene)-2-(phenylselanyl)ethanone (4q)

White solid, yield 83%; mp 151–153 °C; IR (KBr): 3350, 1589, 1350, 1211, 747 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.89-1.93$ (m, 2H, CH₂), 3.28–3.32 (m, 2H, NCH₂), 3.41–3.45 (m, 2H, NCH₂), 6.49 (br, 1H, NH), 6.99–7.24 (m, 9H, ArH), 11.78 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.4$, 39.0, 39.6, 79.8, 125.9, 126.4, 127.7, 128.7, 129.4, 130.5, 134.9, 144.0, 160.2, 190.1; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₇ClN₂NaOSe [(M+Na⁺)], 415.0087, found, 415.0083.

2-(nitro(phenylthio)methylene)hexahydropyrimidine (4r)

White solid, yield 90%; mp 152.5–153 °C; IR (KBr): 3284, 1585, 1356, 1200, 1127, 738 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.93-1.98$ (m, 2H, CH₂), 3.42–3.47 (m, 4H, NCH₂), 7.11–7.15 (m, 3H, ArH), 7.22–7.26 (m, 2H, ArH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 19.0, 39.0, 39.0, 100.8, 125.5, 125.9, 129.1, 135.7, 155.7;$ HRMS (TOF ES⁺): m/z calcd for C₁₁H₁₃N₃NaO₂S [(M+Na⁺)], 274.0621; found, 274.0619.

2-(1,3-Diazepan-2-ylidene)-1-phenyl-2-(phenylthio)ethanone (5a)

White solid, yield 92%; mp 177–178 °C; IR (KBr): 3363, 1594, 1343, 1202, 742 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.75–1.81 (m, 4H, CH₂CH₂), 3.20–3.23 (m, 2H, NCH₂), 3.45–3.48 (m, 2H, NCH₂), 6.55 (br, 1H, NH), 7.08–7.31 (m, 10H, ArH), 12.14 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 28.0, 28.3, 45.5, 46.3, 81.6, 124.8, 125.1, 126.9, 127.6, 128.7, 129.3, 140.9, 143.9, 170.7, 194.2; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₁N₂OS [(M+H⁺)], 325.1369; found, 325.1368.

2-(1,3-Diazepan-2-ylidene)-2-(phenylselanyl)-1-(*p*-tolyl)ethanone (5b)

White solid, yield 93%; mp 157–158 °C; IR (KBr): 3317, 2932, 1605, 1349, 1200, 741 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.73–1.80 (m, 4H, CH₂CH₂), 2.29 (s, 3H, ArCH₃), 3.18–3.20 (m, 2H, NCH₂), 3.43–3.47 (m, 2H, NCH₂), 6.54 (br, 1H, NH), 7.01 (d, *J* = 7.7 Hz, 2H), 7.00–7.13 (m, 3H, ArH), 7.24–7.27 (m, 3H, ArH), 12.20 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 21.8, 28.1, 28.3, 45.5, 46.3, 81.4, 124.8, 125.1, 127.1, 128.3, 128.3, 129.3, 138.6, 141.0, 170.8, 194.2; HRMS (TOF ES⁺): m/z calcd for C₂₀H₂₃N₂OS [(M+H⁺)], 339.1526, found, 339.1518.

2-(1,3-Diazepan-2-ylidene)-1-(4-fluorophenyl)-2-(phenylthio)ethanone (5c)

White solid, yield 90%; mp 124–125 °C; IR (KBr): 3331, 3060, 1591, 1348, 1207, 847, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃); $\delta = 1.76-1.84$ (m, 4H, CH₂CH₂), 3.22–3.26 (m, 2H, NCH₂), 3.46–3.50 (m, 2H, NCH₂), 6.59 (br, 1H, NH), 6.85–6.91 (m, 2H, ArH), 7.09–7.14 (m, 3H, ArH), 7.25–7.29 (m, ArH, 2H), 7.33–7.36 (m, ArH, 2H), 12.12 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 28.0$, 28.2, 45.5, 46.3, 81.5, 114.4 (d, J = 21.3 Hz), 124.7, 125.2, 129.2, 129.4, 139.9, 140.6, 163.0 (d, J = 245.0 Hz), 170.7, 192.80; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₉FN₂NaOS [(M+Na⁺)], 365.1094; found, 365.1087.

1-(4-Chlorophenyl)-2-(1,3-diazepan-2-ylidene)-2-(phenylthio)ethanone (5d)

White solid, yield 87%; mp 156–157 °C; IR (KBr): 3325, 3053, 1594, 1349, 1202, 833, 744 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.68–1.81 (m, 4H, CH₂CH₂), 3.20–3.3.24 (m, 2H, NCH₂), 3.67–3.70 (m, 2H, NCH₂), 6.56 (br, 1H, NH), 7.05–7.25 (m, 9H, ArH), 12.06 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 27.9, 28.2, 45.5, 46.3, 81.5, 124.7, 125.3,

127.8, 128.5, 129.4, 134.4, 140.5, 142.2, 170.6, 192.7; HRMS (TOF ES⁺): m/z calcd for $C_{19}H_{20}ClN_2OS$ [(M+H⁺)], 359.0979; found, 359.0975.

2-(1,3-Diazepan-2-ylidene)-2-((4-methoxyphenyl)thio)-1-phenylethanone (5e)

White solid, yield 96%; mp 171–172 °C; IR (KBr): 3316, 2930, 1600, 1342, 1238, 816 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.75–1.79 (m, 4H, CH₂CH₂), 3.19–3.23 (m, 2H, NCH₂), 3.42–3.47 (m, 2H, NCH₂), 3.76 (s, 3H, OCH₃), 6.64 (br, 1H, NH), 6.80 (d, *J* = 8.5 Hz), 6.98 (d, *J* = 8.5 Hz), 7.18–7.26 (m, 3H, ArH), 7.28–7.32 (m, 2H, ArH), 12.11 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 28.0, 28.3, 45.5, 46.3, 55.8, 82.8, 115.1, 126.3, 126.9, 127.6, 128.6, 131.5, 144.0, 157.9, 170.8, 194.1; HRMS (TOF ES⁺): m/z calcd for C₂₀H₂₃N₂O₂S [(M+H⁺)], 355.1475; found, 355.147.

2-(1,3-Diazepan-2-ylidene)-1-phenyl-2-(p-tolylthio)ethanone (5f)

White solid, yield 95%; mp 175–177 °C; IR (KBr): 3334, 3046, 1600, 1345, 1200, 800 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.75–1.81 (m, 4H, CH₂CH₂), 2.30 (s, 3H, ArCH₃), 3.19–3.23 (m, 2H, NCH₂), 3.42–3.48 (m, 2H, NCH₂), 6.58 (br, 1H, NH), 6.98 (d, *J* = 8.2 Hz, 2H, ArH), 7.06 (d, *J* = 8.2 Hz, 2H, ArH), 7.17–7.32 (m, 5H, ArH), 12.14(br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 21.3, 28.0, 28.3, 45.5, 46.3, 81.9, 124.8, 126.9, 127.6, 128.6, 130.1, 134.8, 137.2, 143.9, 170.7, 194.1; HRMS (TOF ES⁺): m/z calcd for C₂₀H₂₃N₂OS [(M+H⁺)], 339.1526; found, 339.1527.

2-((4-Chlorophenyl)thio)-2-(1,3-diazepan-2-ylidene)-1-phenylethanone (5g)

White solid, yield 91%; mp 200–202 °C; IR (KBr): 3318, 1603, 1346, 1199, 803 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.74–182 (m, 4H, CH₂CH₂), 3.21–3.23 (m, 2H, NCH₂), 3.45–3.48 (m, 2H, NCH₂), 6.48 (br, 1H, NH), 7.00 (d, *J* = 8.6 Hz, 2H, ArH), 7.17 –7.28 (m, 7H, ArH), 12.1 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 27.9, 28.2, 45.5, 46.3, 81.2, 126.0, 126.7, 127.7, 128.8, 129.4, 130.8, 139.5, 143.7, 170.5, 194.2; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₀ ClN₂OS [(M+H⁺)], 359.0979; found, 359.0982.

2-(1,3-Diazepan-2-ylidene)-2-((3,5-dichlorophenyl)thio)-1-phenylethanone (5h)

White solid, yield 83%; mp 139–141 °C; IR (KBr): 3308, 1561, 1348, 1206, 791 cm⁻¹; ¹H NMR (500 MHz, CDCl₃); $\delta = 1.79-1.84$ (m, 4H, CH₂CH₂), 3.24–3.28 (m, 2H, NCH₂), 3.47–3.50 (m, 2H, NCH₂), 6.38 (br, 1H, NH), 6.91 (s, 2H, ArH), 7.04 (s, 1H, ArH), 7.20–7.27 (m, 5H, ArH), 12.07 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 27.8$, 28.1, 45.4, 46.3, 80.0, 122.7, 125.3, 126.6, 127.8, 128.9, 135.8, 143.5, 145.1, 170.1, 194.3; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₉Cl₂N₂OS [(M+H⁺)], 393.0590; found, 393.0596.

2-(1,3-Diazepan-2-ylidene)-2-((4-fluorophenyl)thio)-1-phenylethanone (5i)

White solid, yield 88%, mp 188–189 °C; IR (KBr): 3255, 1556, 1354, 1210, 776 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.75-1.83$ (m, 4H, CH₂CH₂), 3.19–3.23 (m, 2H, NCH₂), 3.42–3.47 (m, 2H, NCH₂), 6.48 (br, 1H, NH), 6.74–6.86 (m, 3H, ArH), 7.15–7.83 (m, 6H, ArH), 12.09 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 27.9$, 28.2, 45.5, 46.3, 111.5 (d, J = 23.8 Hz), 112.0 (d, J = 21.3 Hz), 120.4, 126.8, 127.3, 127.7, 128.7, 128.8, 130.6, 143.7, 163.8 (d, J = 246.3 Hz), 170.4, 194.2; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₀FN₂OS [(M+H⁺)], 343.1275; found, 343.1271.

2-(1,3-Diazepan-2-ylidene)1-phenyl-2-(phenylselanyl)ethanone (5j)

White solid, yield 90%; mp 154–156 °C; IR (KBr): 3347, 1593, 1342, 1202, 737 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.72-1.77$ (m, 4H, CH₂CH₂), 3.15–3.19 (m, 2H, CH₂), 3.42–3.46 (m, 2H, CH₂), 6.53 (br, 1H, NH), 7.12–7.28 (m, 10H, ArH), 12.17 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 28.2$, 28.2, 45.7, 46.4, 81.6, 125.9, 126.8, 127.5, 127.6, 128.5, 129.5, 135.7, 145.0, 170.7, 194.4; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₁N₂OSe [(M+H⁺)], 373.0814; found, 373.0816.

2-(1,3-Diazepan-2-ylidene)-2-(phenylselanyl)-1-(*p*-tolyl)ethanone (5k)

White solid, yield 93%, mp 125–127 °C; IR (KBr): 3308, 1603, 1346, 1204, 818, 736 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.72-1.77$ (m, 4H, CH₂CH₂), 3.15–3.18 (m, 2H, NCH₂), 3.41–3.45 (m, 2H, NCH₂), 6.50 (br, 1H, NH), 7.00 (d, J = 7.4 Hz, 2H, ArH), 7.13–7.26 (m, 7H, ArH), 12.19 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.8$, 28.1, 28.2, 45.7, 46.5, 81.5, 125.9, 127.0, 127.4, 128.3, 129.5, 135.8, 138.5, 142.1, 170.8, 194.5; HRMS (TOF ES⁺): m/z calcd for C₂₀H₂₃N₂OSe [(M+H⁺)], 387.0970; found, 387.0970.

2-(1,3-Diazepan-2-ylidene)-1-(4-fluorophenyl)-2-(phenylselanyl)ethanone (5l)

White solid, yield 86%; mp 137–138 °C; IR (KBr): 3319, 3053, 1598, 1349, 1207, 841, 737 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.73-1.80$ (m, 4H, CH₂CH₂), 2.17 (s, 3H, ArH), 3.18–3.22 (m, 2H, NCH₂), 3.43–3.48 (m, 2H, NCH₂), 6.54 (br, 1H, NH), 6.86 (t, *J* = 8.5 Hz, 2H, ArH), 7.17–7.30 (m, 7H, ArH), 12.14 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 28.0$, 28.2, 45.6, 46.5, 81.5, 114.4 (d, *J* = 21.3 Hz), 126.0, 127.4, 129.0,

129.6, 135.5, 141.0, 163.0 (d, J = 245.0 Hz), 170.7, 193.1; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₀FN₂Ose [(M+H⁺)], 391.0719; found, 391.0718.

1-(4-Chlorophenyl)-2-(1,3-diazepan-2-ylidene)-2-(phenylselanyl)ethanone (5m)

White solid, yield 85%; mp 141–143 °C; IR (KBr): 3315, 3064, 1590, 1346, 1203, 739 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.77-1.83$ (m, 4H, CH₂CH₂), 3.22–3.25 (m, 2H, NCH₂), 3.46–3.50 (m, 2H, NCH₂), 6.58 (br, 1H, NH), 7.14–7.33 (m, 9H, ArH), 12.15 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 28.0$, 28.0, 45.6, 46.4, 81.5, 126.1, 127.4, 127.8, 128.4, 129.6, 134.3, 135.4, 143.4, 170.6, 192.9; HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₀ClN₂OSe [(M+H⁺)], 407.0424; found, 407.0416.

Crystal X-ray structure and packing diagrams of compound 3g²

Fig. A ORTEP view of the molecular structure of **3g**, thermal ellipsoids are drawn at 30% probability.

Fig. B Packing in the crystal structure of 3g, viewed along the *b* axis.

Fig. C Packing in the crystal structure of 3g, viewed along the *a* axis.

Empirical formula	$C_{10}H_{10}N_2O_2S$		
Formula weight	326.40		
Temperature	298(2) K		
Wavelength	0.71073 A		
Crystal system space group	Monoclinic $P2(1)/c$		
Unit cell dimensions	a = 11.5631(18) A slpha = 90 deg		
Chit cen dimensions	a = 11.5051(10) A appla = 90 deg. b = 15.024(2) A beta = 102.048(2) deg		
	D = 15.924(3) A $Deta = 102.048(2) deg.$		
¥7-1	c = 8.8842(14) A gamma = 90 deg.		
	1599.8(4) A^5		
Z, Calculated density	4, 1.355 Mg/m [*] 3		
Absorption coefficient	0.214 mm^-1		
F(000)	688		
Crystal size	0.23 x 0.16 x 0.14 mm		
Theta range for data collection	1.80 to 28.19 deg.		
Limiting indices	-15<=h<=15, -20<=k<=20, -8<=l<=11		
Reflections collected / unique	10822 / 3761 [R(int) = 0.0468]		
Completeness to theta $= 28.19$	95.5 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9707 and 0.9525		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3761 / 0 / 209		
Goodness-of-fit on F^2	0.926		
Final R indices [I>2sigma(I)]	R1 = 0.0476, wR2 = 0.1024		
R indices (all data)	R1 = 0.0963, $wR2 = 0.1267$		
Largest diff. peak and hole	0.178 and -0.268 e.A^-3		

 Table S1.
 Crystal data and structure refinement for 3g

_

Table S2. Geometric parameters of compound 3g

Bond lengths (Å)		
N(1)-C(9) 1.314(3) C(6)-H(6)	0.9300
N(1)-C(11) 1.457(3) C(7)-H(7)	0.9300
N(1)-H(1) 0.8600	C(8)-C(12)	1.409(3)
N(2)-C(9) 1.334(3) C(8)-C(9)	1.413(3)
N(2)-C(10) 1.459(3) C(10)-C(11)	1.509(3)
N(2)-H(2) 0.8600	C(10)-H(10A)	0.9700
O(1)-C(2) 1.378(3) C(10)-H(10B)	0.9700
O(1)-C(1) 1.417(3) C(11)-H(11A)	0.9700
O(2)-C(12) 1.254(3) C(11)-H(11B)	0.9700
S(1)-C(8) 1.755(2	C(12)-C(13)	1.509(3)

S(1)-C(5)	1.778(2)	C(13)-C(14)	1.379(3)
C(1)-H(1A)	0.9600	C(13)-C(18)	1.386(3)
C(1)-H(1B)	0.9600	C(14)-C(15)	1.380(3)
C(1)-H(1C)	0.9600	C(14)-H(14)	0.9300
C(2)-C(7)	1.381(3)	C(15)-C(16)	1.366(3)
C(2)-C(3)	1.387(3)	C(15)-H(15)	0.9300
C(3)-C(4)	1.383(3)	C(16)-C(17)	1.379(4)
C(3)-H(3)	0.9300	C(16)-H(16)	0.9300
C(4)-C(5)	1.384(3)	C(17)-C(18)	1.381(3)
C(4)-H(4)	0.9300	C(17)-H(17)	0.9300
C(5)-C(6)	1.393(3)	C(18)-H(18)	0.9300
C(6)-C(7)	1.368(3)		
Bond angles (*)			
C(9)-N(1)-C(11)	111.79(19)	N(2)-C(9)-C(8)	126.3(2)
C(9)-N(1)-H(1)	124.1	N(1)-C(9)-C(8)	124.6(2)
C(11)-N(1)-H(1)	124.1	N(2)-C(10)-C(11)	103.20(19)
C(9)-N(2)-C(10)	111.6(2)	N(2)-C(10)-H(10A)	111.1
C(9)-N(2)-H(2)	124.2	C(11)-C(10)-H(10A)	111.1
C(10)-N(2)-H(2)	124.2	N(2)-C(10)-H(10B)	111.1
C(2)-O(1)-C(1)	117.4(2)	C(11)-C(10)-H(10B)	111.1
C(8)-S(1)-C(5)	104.70(10)	H(10A)-C(10)-H(10B)	109.1
O(1)-C(1)-H(1A)	109.5	N(1)-C(11)-C(10)	102.5(2)
O(1)-C(1)-H(1B)	109.5	N(1)-C(11)-H(11A)	111.3
H(1A)-C(1)-H(1B)	109.5	C(10)-C(11)-H(11A)	111.3
O(1)-C(1)-H(1C)	109.5	N(1)-C(11)-H(11B)	111.3
H(1A)-C(1)-H(1C)	109.5	C(10)-C(11)-H(11B)	111.3
H(1B)-C(1)-H(1C)	109.5	H(11A)-C(11)-H(11B)	109.2
O(1)-C(2)-C(7)	115.6(2)	O(2)-C(12)-C(8)	123.6(2)
O(1)-C(2)-C(3)	124.8(2)	O(2)-C(12)-C(13)	117.0(2)
C(7)-C(2)-C(3)	119.5(2)	C(8)-C(12)-C(13)	119.33(19)
C(4)-C(3)-C(2)	119.5(2)	C(14)-C(13)-C(18)	118.1(2)
C(4)-C(3)-H(3)	120.3	C(14)-C(13)-C(12)	120.0(2)
C(2)-C(3)-H(3)	120.3	C(18)-C(13)-C(12)	121.9(2)
C(3)-C(4)-C(5)	121.5(2)	C(13)-C(14)-C(15)	121.3(2)
C(3)-C(4)-H(4)	119.2	C(13)-C(14)-H(14)	119.3
C(5)-C(4)-H(4)	119.2	C(15)-C(14)-H(14)	119.3
C(4)-C(5)-C(6)	117.9(2)	C(16)-C(15)-C(14)	120.0(2)
C(4)-C(5)-S(1)	118.36(17)	C(16)-C(15)-H(15)	120.0
C(6)-C(5)-S(1)	123.73(17)	C(14)-C(15)-H(15)	120.0

C(7)-C(6)-C(5)	121.1(2)	C(15)-C(16)-C(17)	119.8(2)
C(7)-C(6)-H(6)	119.5	C(15)-C(16)-H(16)	120.1
C(5)-C(6)-H(6)	119.5	C(17)-C(16)-H(16)	120.1
C(6)-C(7)-C(2)	120.5(2)	C(16)-C(17)-C(18)	120.1(2)
C(6)-C(7)-H(7)	119.7	C(16)-C(17)-H(17)	120.0
C(2)-C(7)-H(7)	119.7	C(18)-C(17)-H(17)	120.0
C(12)-C(8)-C(9)	120.69(19)	C(17)-C(18)-C(13)	120.7(2)
C(12)-C(8)-S(1)	121.79(16)	C(17)-C(18)-H(18)	119.6
C(9)-C(8)-S(1)	117.33(17)	C(13)-C(18)-H(18)	119.6
N(2)-C(9)-N(1)	109.1(2)		
Torsion angles (°)			
C(1)-O(1)-C(2)-C(7)	174.9(2)	C(12)-C(8)-C(9)-N(1)	-179.3(2)
C(1)-O(1)-C(2)-C(3)	-5.1(3)	S(1)-C(8)-C(9)-N(1)	5.6(3)
O(1)-C(2)-C(3)-C(4)	179.1(2)	C(9)-N(2)-C(10)-C(11)	-9.7(3)
C(7)-C(2)-C(3)-C(4)	-0.9(3)	C(9)-N(1)-C(11)-C(10)	-12.1(3)
C(2)-C(3)-C(4)-C(5)	-0.3(3)	N(2)-C(10)-C(11)-N(1)	12.3(3)
C(3)-C(4)-C(5)-C(6)	1.4(3)	C(9)-C(8)-C(12)-O(2)	-3.7(3)
C(3)-C(4)-C(5)-S(1)	-178.29(17)	S(1)-C(8)-C(12)-O(2)	171.19(18)
C(8)-S(1)-C(5)-C(4)	169.52(17)	C(9)-C(8)-C(12)-C(13)	177.3(2)
C(8)-S(1)-C(5)-C(6)	-10.1(2)	S(1)-C(8)-C(12)-C(13)	-7.8(3)
C(4)-C(5)-C(6)-C(7)	-1.3(3)	O(2)-C(12)-C(13)-C(14)	-64.5(3)
S(1)-C(5)-C(6)-C(7)	178.36(17)	C(8)-C(12)-C(13)-C(14)	114.5(2)
C(5)-C(6)-C(7)-C(2)	0.1(4)	O(2)-C(12)-C(13)-C(18)	113.4(3)
O(1)-C(2)-C(7)-C(6)	-179.0(2)	C(8)-C(12)-C(13)-C(18)	-67.6(3)
C(3)-C(2)-C(7)-C(6)	1.0(4)	C(18)-C(13)-C(14)-C(15)	0.5(4)
C(5)-S(1)-C(8)-C(12)	107.30(19)	C(12)-C(13)-C(14)-C(15)	178.5(2)
C(5)-S(1)-C(8)-C(9)	-77.62(18)	C(13)-C(14)-C(15)-C(16)	-0.6(4)
C(10)-N(2)-C(9)-N(1)	2.4(3)	C(14)-C(15)-C(16)-C(17)	-0.2(4)
C(10)-N(2)-C(9)-C(8)	-176.5(2)	C(15)-C(16)-C(17)-C(18)	1.1(4)
C(11)-N(1)-C(9)-N(2)	6.5(3)	C(16)-C(17)-C(18)-C(13)	-1.2(4)
C(11)-N(1)-C(9)-C(8)	-174.6(2)	C(14)-C(13)-C(18)-C(17)	0.4(4)
C(12)-C(8)-C(9)-N(2)	-0.5(3)	C(12)-C(13)-C(18)-C(17)	-177.6(2)
S(1)-C(8)-C(9)-N(2)	-175.64(18)		

Figure S1¹H NMR spectrum (500 MHz, CDCl₃) of compound 3a

Figure S2 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3a

Figure S4 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3b

Figure S5 1 H NMR spectrum (500 MHz, CDCl₃) of compound 3c

Figure S6 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3c

Figure S7 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3d

S31

Figure S8 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3d

Figure S9 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3e

S33

Figure S10 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3e

Figure S11 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3f

Figure S12 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3f

Figure S13 1 H NMR spectrum (500 MHz, CDCl₃) of compound 3g

Figure S14 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3g

Figure S15 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3h

Figure S16¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3h

Figure S17 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3i

Figure S19 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3j

Figure S21 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3k

Figure S23 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3l

Figure S24 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 31

Figure S25 1 H NMR spectrum (500 MHz, CDCl₃) of compound 3m

Figure S26¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3m

Figure S27 ¹H NMR spectrum (500 MHz, CDCl₃) of compound **3n**

Figure S29 ¹H NMR spectrum (500 MHz, CDCl₃) of compound **30**

Figure S30¹³C NMR spectrum (125 MHz, CDCl₃) of compound 30

Figure S31 1 H NMR spectrum (500 MHz, CDCl₃) of compound 3p

Figure S33 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 3q

Figure S34 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 3q

Figure S35 ¹H NMR spectrum (500 MHz, DMSO-*d*₆) of compound **4a**

Figure S37 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 4b

Figure S38 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 4b

Figure S39 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 4c

Figure S40 ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 4c

Figure S41 ¹H NMR spectrum (400 MHz,) of compound 4d

Figure S43 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 4e

Figure S45 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4f

Figure S49 ¹H NMR spectrum (500 MHz, CDCl₃) of compound 4h

S74

Figure S51. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4i

Figure S52. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 4i

S78

Figure S55. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4k

Figure S58. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 4l

Figure S59. ¹H NMR (500 MHz, CDCl₃) spectra of compound **4m**

Figure S61. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4n

Figure S62. ¹³C NMR (125 MHz, CDCl₃) spectra of compound **4n**

Figure S63. ¹H NMR (500 MHz, CDCl₃) spectra of compound 40

Figure S65. ¹H NMR (500 MHz, CDCl₃) spectra of compound **4p**

Figure S66. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 4p

Figure S67. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4q

Figure S68. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 4q

Figure S71. ¹H NMR (500 MHz, CDCl₃) spectra of compound 5a

Figure S73. ¹H NMR (500 MHz, CDCl₃) spectra of compound **5b**

Figure S74. ¹³C NMR (125 MHz, CDCl₃) spectra of compound **5b**

Figure S75. ¹H NMR (500 MHz, CDCl₃) spectra of compound **5c**

Figure S77. ¹H NMR (500 MHz, CDCl₃) spectra of compound 5d

Figure S79. ¹H NMR (500 MHz, CDCl₃) spectra of compound **5e**

Figure S82. ¹³C NMR (125 MHz, CDCl₃) spectra of compound **5f**

Figure S83. ¹H NMR (500 MHz, CDCl₃) spectra of compound **5g**

Figure S87. ¹H NMR (500 MHz, CDCl₃) spectra of compound **5**i

Figure S88. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 5i

Figure S89. ¹H NMR (500 MHz, CDCl₃) spectra of compound 5j

Figure S91. ¹H NMR (500 MHz, CDCl₃) spectra of compound 5k

Figure S92. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 5k

Figure S95. 1H NMR (500 MHz, CDCl₃) spectra of compound 5m

Notes and References

- (a) Huang, Z.-T.; Wang, M.-X. Synthesis 1992, 12, 1273–1276. (b) Li, Z.-J.; Charles, D. Synth. Commun. 2001, 31, 527–533. (c)
 X.-B. Chen, X.-M. Liu, R. Huang, S.-J. Yan, J. Lin, Eur, J. Org. Chem. 2013, 4607.
- 2. CCDC 949284 which containing in the electronic supplementary information (ESI) for crystallographic data of compound **3g**. This material is available free of charge from The Cambridge Crystallographic Data Center *via* the Internet at www.ccdc.cam.ac.uk/data_request/cif.