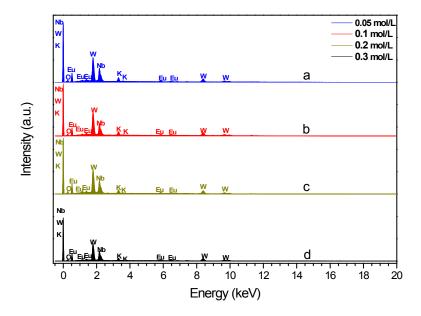
Electronic Supplementary Information


The Luminescence of Ion-exchangeable Defect Pyrochlore KNbWO₆·H₂O:xEu³⁺

Yong Nam Han, † Shihui Jiao, Man Xu, Yaohua Xu, Guangsheng Pang* and Shouhua Feng

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry,

Jilin University, Changchun 130012, P. R. China

The composition of the products is determined by EDX using a HITACHI SU8020 electron microscope equipped with Bruker spectrometer operating at 20 kV.

Figure S1 EDX spectra of KNbWO₆·H₂O: xEu^{3+} prepared in Eu(NO₃)₃ solution of (a) 0.05 mol/L, (b) 0.1mol/L, (c) 0.2mol/L, and (d) 0.3 mol/L.

Element Atom% C _{Eu3+} (mol/L)	О	Nb	W	K	Eu
0.05	76.02	9.92	8.47	4.50	1.10
0.1	74.09	9.93	9.87	4.81	1.30
0.2	76.12	9.40	9.16	3.94	1.38
0.3	73.65	10.88	9.78	3.84	1.84

The x value of KNbWO₆·H₂O:xEu³⁺ is determined by normalized of the Eu component to the average value of Nb and W components in the product. For example, The x value of KNbWO₆·H₂O:xEu³⁺ prepared in 0.1 mol/L Eu(NO₃)₃ solution is determined as 1.30/(9.93/2+9.87/2)=0.131. So, the x value of KNbWO₆·H₂O:xEu³⁺ prepared in Eu(NO₃)₃ solution of 0.05, 0.1, 0.2, and 0.3 mol/L are determined as 0.120, 0.131, 0.149, and 0.178, respectively.

 $KNbWO_6\cdot H_2O:xEu$ is difficult to be dissolved. But we find that Eu^{3+} in $KNbWO_6\cdot H_2O:xEu$ can be exchanged in concentrated nitric acid under hydrothermal conditions. Eu^{3+} in $KNbWO_6\cdot H_2O:xEu$ can be determined by ICP after treating the

samples in concentrated nitric acid under hydrothermal conditions. The details are as follow:

50.00 mg KNbWO₆·H₂O:xEu is treated in 30mL 3M HNO₃ at 180 °C for 24h under hydrothermal condition. This process is repeated 4 times to make sure that Eu³⁺ can be completely removed from KNbWO₆·H₂O:xEu. The solution is collected for ICP measurement. According to the ICP result, the doping composition of Eu³⁺ are 0.115, 0.127, 0.143, 0.170 for the products obtained in Eu(NO₃)₃ solution of 0.05, 0.1, 0.2, and 0.3 mol/L, respectively. This result is consistent with that of EDX. The deviation (less than 5%) between the results of EDX and ICP probably due to that Eu³⁺ cannot be completely removed from KNbWO₆·H₂O:xEu. The EDX result indicates that there is still ca. 1% Eu³⁺ residual after four time hydrothermal treatments.