Supporting Information

A Facile Solvent-Free Route to Synthesize Ordered

Mesoporous Carbons

Qiaowei Wang^{a,b}, Yijie Mu^a, Weili Zhang^a, Liangshu Zhong^a, Yan Meng^{a,*}, Yuhan Sun^{a,c,*}

^aCAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institution, Chinese Academy of Sciences, Shanghai, 201210, China
^bUniversity of Chinese Academy of Sciences, Beijing 100049, China
^cInstitute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China

Experimental section

Synthesis of ordered mesoporous carbon (H-OMC): H-OMC was synthesized through solid-phase synthesis route as following: 1.0 g of triblock copolymer Pluronic F127 was added in agate mortar (Ø 15 cm) at room temperature and ground into fine powder. Then 0.22 g of resorcinol was added and ground in the presence of F127. 0.40 g of terephthalaldehyde was added in 3 batches and the mixture was intensely ground with pestle for 5 minutes during which sticky polymer was formed. The sticky nanocomposite was placed in a quartz boat at 100 °C for 8 hours to obtain as-made product, which was finally carbonized in a tubular furnace at at 600 °C for 3 h under nitrogen flow (flow rate of 100 mL/min) at the ramp of 1 °C/min. C-OMC, N-OMC, Mo-OMC and F-OMC were synthesized followed the same way, besides adding different amount kinds of precursors. All of the as-made samples were carbonized under nitrogen flow, unless the preparation of Mo-OMC, which was carbonized under hydrogen flow at 600 °C for 3 h (flow rate of 100 mL/min) at the ramp of 1 °C/min. The details of preparation of all samples were listed in Table S1.

Characterization

Small angle X-ray diffraction (XRD) patterns were taken on a Bruker D8 X-ray diffractometer with Ni-filtered Cu Kα radiation (40 kV, 40 mA). The d-spacing values were calculated using the Braggs diffraction formula of 2*d*sinθ = $n\lambda$, and the unit parameters unit parameters (*a*) were calculated from the formula $a = 2d_{10}/3^{1/2}$ for OMC and $a = d_{110}*2^{1/2}$ for cubic carbon of C-OMC. The N₂ adsorption-desorption isotherms were carried out at 77 K on a Micromeritics TriStar 3000 apparatus at -196 °C. Before analysis, the tested samples were degassed at 473 K for 6 hours under vacuum. The surface area was calculated by the Brunauer-Emmett-Teller (BET) method and the pore size distribution curve was calculated by the Barret-Joyner-Halenda (BJH) method using adsorption branch of the isotherms. And the total pore volumes (V₁) were estimated from the adsorbed amount of nitrogen at a relative pressure P/P_0 of 0.995. The micropore volumes (V_m) was calculated from the V-t plot method using the equation of V_m/cm³ = 0.0015471, where I represents the y intercepts in the V-t plots. The t values were calculated as a function of the relative pressure using the de Bore equation, $t/\text{\AA} = [13.99/(\log(P_0/P) + 0.0340)]^{1/2}$. Transmission electron microscopy (TEM) experiments were conducted on a JEOL 2011 microscope (Japan) operated at 200 kV. The samples for TEM tests were suspended in ethanol and supported onto a holey carbon film on a Cu grid.

Table S1. Preparation conditions of H-OMC, C-OMC, N-OMC, Mo-OMC and F-OMC

Sample	F127/g	Resorcinol	Terephthalaldehyde/	Melamine	Mo source
		/g	g	$/g^a$	$/g^b$
Н-ОМС	0.62	0.22	0.40	-	-
C-OMC	0.41	0.22	0.40	-	-
N-OMC	1.50	0.44	0.56	2.0	-
Mo-OMC	0.62	0.22	0.40	-	0.030
F-OMC	0.62	0.44	0.49 ^e	-	-

nanocomposites prepared through solid-phase synthesis method

^aMelamine served as N source.

^bPhosphomolybdic acid served as Mo source and the nominal content of Mo was ~5 wt%.

°Nitrogen content determined by elemental analysis.

^dContent of Mo₂C determined by XPS.

^eFormaldehyde was used as monomer instead of terepthalaldehyde.

Figure S1. SAXS patterns of (A) as-made H-OMC and H-OMC, (b) as-made C-OMC and C-OMC. The patterns were acquired on a Nanostar U small-angle X-ray scattering system using Cu Kα radiation.

Figure S2. BJH pore size distribution of H-OMC (a), C-OMC (b), N-OMC (c), Mo-OMC (d), and F-OMC (e)

prepared via solvent-free synthesis method.

Figure S3. TG (A) and DTG (B) curves for H-OMC (black line) and C-OMC (red line). The measurements were carried out on a Mettler Toledo TGA/SDTA851 analyzer from 40°C to 800°C under argon with a rate of 5°C min⁻¹.

Figure S4. Raman spectra of H-OMC (red line) and background of glass slide (black line). The Raman spectra showed two broad band at 1317 and 1562 cm⁻¹, assigned to the D band and G band, respectively, suggesting an amorphous carbon framework.

Figure S5. XPS spectra of N-OMC.

Figure S6. Wide-angle X-ray diffraction patterns of nanocomposites of Mo-OMC.

Figure S7. XPS spectra of Mo-OMC.

Figure S8. Small angle XRD pattern of H-OMC with a large amount of more than 10 g in one-pot