Supporting Information

A single colorimetric sensor for multiple target ions: the simultaneous detec tion of Fe²⁺ and Cu²⁺ in aqueous media

Hyun Kim, Yu Jeong Na, Eun Joo Song, Kyung Beom Kim, Jeong Mi Bae, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u>

Figure S1. UV-vis absorption spectra of only Fe^{3+} (60 μ M) and a mixture of 1 (20 μ M) with Fe^{3+} (60 μ M) in Bis-tris buffer/DMF (8/2, v/v).

Figure S2. Positive-ion electrospray ionization mass spectrum of **1** ($1.0 \times 10^{-4} \text{ M}$) upon additi on of **2** equiv of Fe²⁺.

Figure S3. Li's equation plot of 1, assuming 1:2 stoichiometry for association between 1 and Fe^{2+} .

Figure S4. Change in the ratio of absorption intensity of 1 with Fe^{2+} .

Figure S5. Job plot of Cu^{2+} complex formation. The total concentration of 1 with Cu^{2+} was 4 0 μ M.

Figure S6. Li's equation plot of 1, assuming 1:2 stoichiometry for association between 1 and Cu^{2+} .

Figure S7. Change in the ratio of absorption intensity of 1 with Cu^{2+} .

Figure S8. Color of 1 (20 μ M) in the presence of both Fe²⁺ (60 μ M) and Cu²⁺ (60 μ M).

Figure S9. (a) Reversible changes in absorbance of **1** after the sequential addition of Cu^{2+} an d EDTA in Bis-tris buffer/DMF (8/2, v/v). (b) Reversible color changes of **1** after the sequent ial addition of Cu^{2+} and EDTA in Bis-tris buffer/DMF (8/2, v/v). (c) UV-vis absorption spectr a of **1**- Cu^{2+} and Cu^{2+} -EDTA, respectively.