Electronic Supplementary Information

High-Temperature, High-Pressure Hydrothermal Synthesis,

Crystal Structure and Photoluminescent Properties

of K₃[Gd_{1-x}Tb_xGe₃O₈(OH)₂] (x = 0, 0.3, 0.1, 1)

Wei Liu, Min Yang, Ying Ji, Fuyang Liu, Ying Wang, Xiaofeng Wang, Xudong Zhao* and Xiaoyang Liu *

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University,

2699 Qianjin Avenue, Changchun, 130012, P. R. China

E-mail: liuxy@jlu.edu.cn

Contents

- Table S1. Bond lengths [Å] and angles [deg] for K₃[GdGe₃O₈(OH)₂]
- Table S2. Bond lengths [Å] and angles [deg] for K₃[TbGe₃O₈(OH)₂]
- Table S3. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for K₃[GdGe₃O₈(OH)₂]
- Table S4. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for K₃[TbGe₃O₈(OH)₂]
- Table S5. EDS analysis data of K_3 [GdGe₃O₈ (OH) ₂] and K_3 [TbGe₃O₈ (OH) ₂], K_3 [Gd_{0.7}Tb_{0.3}Ge₃O₈ (OH) ₂] and K_3 [Gd_{0.9}Tb_{0.1}Ge₃O₈ (OH) ₂]
- Figure S1. EDS analysis of K_3 [GdGe₃O₈ (OH) ₂] and K_3 [TbGe₃O₈ (OH) ₂], K_3 [Gd_{0.7}Tb_{0.3}Ge₃O₈ (OH) ₂] and K_3 [Gd_{0.9}Tb_{0.1}Ge₃O₈ (OH) ₂]
- Figure S2. The IR spectra of K_3 [GdGe₃O₈ (OH) ₂] and K_3 [TbGe₃O₈ (OH) ₂], K_3 [Gd_{0.7}Tb_{0.3}Ge₃O₈ (OH) ₂] and K_3 [Gd_{0.9}Tb_{0.1}Ge₃O₈ (OH) ₂]

bond	bond length (Å)	bond angle	value (deg)
Gd(1)-O(6)#1	2.224(3)	O(6)#7-Gd(1)-O(1)	171.33(12)
Gd(1)-O(1)	2.264(3)	O(6)#7-Gd(1)-O(2)#2	88.28(8)
Gd(1)-O(2)#2	2.290(2)	O(1)-Gd(1)-O(2)#2	97.54(8)
Gd(1)-O(2)#3	2.290(2)	O(6)#7-Gd(1)-O(2)#3	88.28(8)
Gd(1)-O(3)	2.340(2)	O(1)-Gd(1)-O(2)#3	97.54(8)
Gd(1)-O(3)#4	2.340(2)	O(2)#8-Gd(1)-O(2)#3	95.27(12)
Ge(2)-O(1)	1.702(3)	O(6)#7-Gd(1)-O(3)	88.16(8)
Ge(2)-O(6)	1.703(3)	O(1)-Gd(1)-O(3)	85.67(8)
Ge(2)-O(4)	1.779(2)	O(2)#8-Gd(1)-O(3)	175.31(8)
Ge(2)-O(4)#4	1.779(2)	O(2)#9-Gd(1)-O(3)	87.68(9)
Ge(1)-O(2)	1.716(2)	O(6)#7-Gd(1)-O(3)#4	88.16(8)
Ge(1)-O(3)	1.729(2)	O(1)-Gd(1)-O(3)#6	85.67(8)
Ge(1)-O(4)	1.766(2)	O(2)#8-Gd(1)-O(3)#4	87.68(9)
Ge(1)-O(5)	1.789(2)	O(2)#9-Gd(1)-O(3)#4	175.31(8)
		O(3)-Gd(1)-O(3)#4	89.16(12)
		O(1)-Ge(2)-O(6)	116.86(15)
		O(1)-Ge(2)-O(4)	113.01(9)
		O(6)-Ge(2)-O(4)	104.83(10)
		O(1)-Ge(2)-O(4)#4	113.01(9)
		O(6)-Ge(2)-O(4)#4	104.83(10)
		O(4)-Ge(2)-O(4)#4	102.95(16)
		O(2)-Ge(1)-O(3)	113.54(11)
		O(2)-Ge(1)-O(4)	112.84(11)
		O(3)-Ge(1)-O(4)	111.47(10)
		O(2)-Ge(1)-O(5)	109.75(11)
		O(3)-Ge(1)-O(5)	110.72(11)
		O(4)-Ge(1)-O(5)	97.38

Table S1. Bond lengths [Å] and angles [deg] for $K_3[GdGe_3O_8(OH)_2]$.

Symmetry transformations used to generate equivalent atoms

#1 x+1/2,y,-z+3/2 #2 x,-y+1/2,z+1

+1 #3 x,y,z+1

#4 x,-y+1/2,z

bond	bond length (Å)	bond angle value (de	
Tb(1)-O(2)#1	2.211(4)	O(2)#1-Tb(1)-O(1)	171.41(13)
Tb(1)-O(1)	2.253(3)	O(2)#1-Tb(1)-O(4)#2	88.36(9)
Tb(1)-O(4)#2	2.277(3)	O(1)-Tb(1)-O(4)#2	97.42(9)
Tb(1)-O(4)#3	2.277(3)	O(2)#1-Tb(1)-O(4)#3	88.36(9)
Tb(1)-O(6)	2.321(2)	O(1)-Tb(1)-O(4)#3	97.42(9)
Tb(1)-O(6)#4	2.321(2)	O(4)#2-Tb(1)-O(4)#3	95.01(14)
Ge(2)-O(2)	1.701(4)	O(2)#1-Tb(1)-O(6)	88.19(9)
Ge(2)-O(1)	1.702(3)	O(1)-Tb(1)-O(6)	85.70(9)
Ge(2)-O(5)	1.778(2)	O(4)#2-Tb(1)-O(6)	87.71(10)
Ge(2)-O(5)#4	1.778(2)	O(4)#3-Tb(1)-O(6)	175.54(9)
Ge(3)-O(4)	1.712(2)	O(2)#1-Tb(1)-O(6)#4	88.19(9)
Ge(3)-O(6)	1.728(2)	O(1)-Tb(1)-O(6)#4	85.70(9)
Ge(3)-O(5)	1.765(2)	O(4)#2-Tb(1)-O(6)#4	175.54(9)
Ge(3)-O(3)	1.785(3)	O(6)-Tb(1)-O(6)#4	89.35(13)
		O(2)-Ge(2)-O(1)	116.74(17)
		O(2)-Ge(2)-O(5)	104.99(11)
		O(1)-Ge(2)-O(5)	113.09(10)
		O(2)-Ge(2)-O(5)#4	104.99(11)
		O(1)-Ge(2)-O(5)#4	113.09(10)
		O(5)-Ge(2)-O(5)#4	102.56(17)
		O(4)-Ge(3)-O(6)	113.68(12)
		O(4)-Ge(3)-O(5)	113.05(12)
		O(6)-Ge(3)-O(5)	111.28(11)
		O(4)-Ge(3)-O(3)	109.66(12)
		O(6)-Ge(3)-O(3)	110.68(13)
		O(5)-Ge(3)-O(3)	97.32(12)

Table S2. Bond lengths [Å] and angles [deg] for $K_3[TbGe_3O_8(OH)_2]$.

Symmetry transformations used to generate equivalent atoms

#1 x+1/2,y,-z+3/2 #2 x,y,z

#2 x,y,z+1 #3 x,-y+1/2,z+1

#4 x,-y+1/2,z

	Х	У	Z	U(eq)
Gd(1)	0.458173	0.250000	0.912183	0.00750
Ge(1)	0.400742	0.099771	0.409040	0.00955
Ge(2)	0.244916	0.250000	0.585821	0.00951
O(1)	0.296124	0.250000	0.843473	0.01473
O(2)	0.468473	0.130076	0.639114	0.01717
O(3)	0.458613	0.126591	0.167052	0.01749
O(4)	0.281993	0.147307	0.423864	0.01876
O(5)	0.367972	-0.027966	0.412826	0.01788
O(6)	0.120639	0.250000	0.574222	0.02209
K(1)	0.135087	0.016618	0.410827	0.02906
K(2)	0.130232	0.250000	0.082573	0.02848

Table S3. Atomic coordinates and equivalent isotropic displacement parameters (Å2)for $K_3[GdGe_3O_8(OH)_2]$.

Table S4. Atomic coordinates and equivalent isotropic displacement parameters
 $(Å^2)$ for K_3 [TbGe₃O₈(OH)₂].

	X	у	Z	U(eq)
Tb(1)	0.458263	0.250000	0.911147	0.00605
Ge(1)	0.244483	0.250000	0.586383	0.00772
Ge(2)	0.400869	0.100214	0.408091	0.00787
O(1)	0.296661	0.250000	0.841605	0.01365
O(2)	0.119799	0.250000	0.575470	0.02100
O(3)	0.368485	-0.026446	0.412446	0.01520
O(4)	0.458785	0.126737	0.164955	0.01587
O(5)	0.280948	0.148067	0.422984	0.01539
O(6)	0.468216	0.130497	0.640207	0.01509
K(1)	0.130593	0.250000	0.082887	0.02571
K(2)	0.135261	0.015877	0.410223	0.02757

	К	Gd	Ge	Tb
$K_3[GdGe_3O_8(OH)_2]$	3.0	1	2.98	0
$K_3[Gd_{0.7}Tb_{0.3}Ge_3O_8(OH)_2]$	3.0	0.7	3.0	0.3
K ₃ [Gd _{0.9} Tb _{0.1} Ge ₃ O ₈ (OH) ₂]	3.0	0.89	3.0	0.11
K ₃ [TbGe ₃ O ₈ (OH) ₂]	3.0	0	3.0	1

Table S5. EDS analysis data of K_3 [GdGe₃O₈ (OH) 2] and K_3 [TbGe₃O₈ (OH) 2], K_3 [Gd_{0.7}Tb_{0.3}Ge₃O₈ (OH) 2] and K_3 [Gd_{0.9}Tb_{0.1}Ge₃O₈ (OH) 2]

Figure S1. EDS analysis of K_3 [GdGe₃O₈ (OH) ₂] and K_3 [TbGe₃O₈ (OH) ₂], K_3 [Gd_{0.7}Tb_{0.3}Ge₃O₈ (OH) ₂] and K_3 [Gd_{0.9}Tb_{0.1}Ge₃O₈ (OH) ₂]

Figure S2. The IR spectra of K_3 [GdGe₃O₈ (OH) ₂] and K_3 [TbGe₃O₈ (OH) ₂], K_3 [Gd_{0.7}Tb_{0.3}Ge₃O₈ (OH) ₂] and K_3 [Gd_{0.9}Tb_{0.1}Ge₃O₈ (OH) ₂]