Electronic supplementary information

Nitrogen-doped mesoporous reduced graphene oxide for high performance supercapacitors

Viet Hung Pham,^a Thuy-Duong Nguyen-Phan,^a Jinhee Jang,^a Thi Diem Tuyet Vu,^a Yoon Jae Lee, ^b In Kyu Song, ^b Eun Woo Shin,^a Jin Suk Chung,^{*a}

1. Graphene oxide synthesis

A small amount of expandable graphite was charged into a 1 L beaker and heated for 10 s in a microwave oven. The graphite expanded to about 150 times its original volume. Graphene oxide was synthesized from the expanded graphite according to a modified Hummers method.^{S1} Typically, 1 kg of concentrated H₂SO₄ (95 wt%) was charged into a 2 L beaker equipped with a mechanical stirrer (Teflon impeller). The beaker was then placed into an ice bath and chilled to 0 °C. Seven grams of expanded graphite were gradually added under stirring to make a suspension. Next, 45 g of KMnO₄ was slowly added so that the temperature did not exceed 20 °C. The temperature was then raised to 35 °C and the suspension was stirred for 2 h. The beaker was subsequently chilled again in an ice bath and 1.5 L of deionized water was slowly added so as to maintain a temperature below 70 °C. The mixture was stirred for 1 h and then diluted with 10 L of deionized water. Fifty milliliters of H₂O₂ (30 wt%) was slowly added, and vigorous bubbles appeared as the color of the suspension changed from dark brown to yellow. The suspension was centrifuged and washed four times with a 1 M HCl solution, followed by centrifuging at 10,000 rpm and washing with deionized water to completely remove the acid until the pH of the GO dispersion reached 6. In its as-synthesized form, the GO dispersion was a paste. After drying the GO dispersion at 80 °C under vacuum for 24 h, the concentration of GO was determined to be approximately 1.0 wt%.

2. PMMA latex synthesis

Positively charged PMMA latex was prepared by surfactant-free emulsion polymerization. Typically, 875 mL of deionized water and 100 g of MMA were charged into a 2 L flask. The mixture was stirred at 350 rpm and bubbled with nitrogen for 30 min. The temperature was increased to 70 °C, followed by the addition of 0.15 g of 2,2'-Azobis (2-methylpropionamidine) dihydrochloride dissolved in 25 mL of deionized water. Polymerization was carried out under stirring for 6 h. The PMMA latex had a concentration of 10 wt%.

(a)

3. Morphology of PMMA-GO and PMMA-RGO

Fig. S1 SEM images of (a) PMMA-GO and (b) PMMA-RGO

4. Elemental composition

	C (at.%)	O (at.%)	N (at.%)	C/O	C/N
GO	66.9	30.4	-	2.2	-
TRGO	87.7	6.3	5.17	13.9	17.0
CRGO	93.4	4.3	2.26	21.7	41.3

Table S1. Elemental composition of TRGO and CRGO determined by XPS

5. Thermogravimetric analysis

Fig. S2 TGA curves of PMMA, PMMA-GO and PMMA-RGO

6. CV of TRGO and CRGO

Fig. S2: CVs of TRGO (a) and CRGO (c) in potential window of 0-3.0 V; CVs of TRGO (b) and CRGO (D) in both potential window of 0-3.0 V and 0-4.0 V