Electronic Supplementary Information for:

Post-isomorphic substitution of trivalent metal cations for Ca²⁺ in portlandite crystals

Authors: M. Park,* J. H. Kim, A. Imran, M.-C. Choi, K. S. Kim and S. Komarneni

*Corresponding author. E-mail: manpark@knu.ac.kr

Content: Figures S1-S5

Fig. S1. XRD pattern of the solid phase reacted at $Ca^{2+}/Fe^{3+} = 5.0$ by a fast addition (flow rate > 2.0 ml/min).

Fig. S2. Water solubility of portlandite and CaFe-Cl LDH. Water solubility was evaluated by measuring the weight of the solid collected by centrifugation and dried at 105 °C whereas the suspension pH was used for calculation of water solubility.

Fig. S3. Change in suspension pH of portlandite (50 ml of 0.2 mole/L) with addition of 0.1M Al(NO₃)₃ solution.

Fig. S4. SEM image of platelet-shaped portlandite reacted with Cr^{3+} at $Ca^{2+}/Cr^{3+} = 4.0$.

Fig. S1. XRD pattern of the solid phase reacted at $Ca^{2+}/Fe^{3+} = 5.0$ by a fast addition (flow rate > 2.0 ml/min).

Fig. S2. Water solubility of portlandite and CaFe-Cl LDH. Water solubility was evaluated by measuring the weight of the solid collected by centrifugation and dried at 105 °C whereas the suspension pH was used for calculation of water solubility.

Fig. S3. Change in suspension pH of portlandite (50 ml of 0.2 mole/L) with addition of 0.1M Al(NO₃)₃ solution.

Fig. S4. SEM image of platelet-shaped portlandite reacted with Cr^{3+} at $Ca^{2+}/Cr^{3+} = 4.0$.

(The nearly same images, tiny particulates, were also obtained from tablet-shaped portlandite)