Supplementary information

Cascade OFF-ON-OFF Fluorescent Probe: Dual Detection of

Trivalent Ions and Phosphate Ions †

Xuejuan Wan,^{a,b, §, *} Tianqi Liu,^{a, §} Haiyang Liu,^b Liqiang Gu,^b and Youwei Yao^{b,**}

Figure S1. ¹H NMR spectrum of probe L.

Figure S2. ¹³C NMR spectrum of probe L.

Figure S3. High-resolution mass spectrum of probe L.

Figure S4. UV-vis absorption spectra obtained for probe L (25 μ M) in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0) with various amounts of Al³⁺ ion. Inset: Absorbance at 564 nm of L as a function of [Al³⁺].

Figure S5. UV-vis absorption spectra obtained for probe L (25 μ M) in CH₃CN/Tris-buffer(1/1, v/v, pH = 7.0) with various amounts of Cr³⁺ ion. Inset: Absorbance at 564 nm of L asafunctionof[Cr³⁺].

Figure S6. Fluorescence spectra of L (10 μ M) in the absence and presence of Al³⁺ or Cr³⁺ ion (80 μ M each) in CH₃CN/H₂O (1/1, v/v, pH = 7.0) at various pH values, λ_{ex} = 520 nm.

Figure S7. Linear response of fluorescence intensity at 586 nm of L (10 μ M) to the Fe³⁺ concentrations changes in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0). The unit of *x* is mol/L.

Figure S8. Fluorescence titrations of L (10 μ M) with Al³⁺ ion in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0). Inset: Change of fluorescence emission intensity with the increasing amount of Al³⁺ at 586 nm, λ_{ex} = 520 nm.

Figure S9. Linear response of fluorescence intensity for L (10 μ M) at 586 nm to the Al³⁺ concentration changes in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0). The unit of *x* is mol/L.

Figure S10. Fluorescence titrations of L (10 μ M) with Cr³⁺ ion in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0). Inset: Change of fluorescence emission intensity with the increasing amount of Cr³⁺ at 586 nm, λ_{ex} = 520 nm.

Figure S11. Linear response of fluorescence intensity for L (10 μ M) at 586 nm to the Cr³⁺ concentration changes in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0). The unit of *x* is mol / L.

Figure S12. High-resolution mass spectrum of L-Fe³⁺ complex.

Figure S13. Job's plot for the determination of binding stoichiometry between L and Al^{3+} ion in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0).

Figure S14. Job's plot for the determination of binding stoichiometry between L and Cr^{3+} ion in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0).

Figure S15. FT-IR spectra of probe L and L-Fe³⁺ complex

Figure S16. Proposed mechanism for the recognition of trivalent ion

Figure S17. Linear response of fluorescence intensity at 586 nm of the L-Fe³⁺ complex to the PO₄³⁻ concentration changes in CH₃CN/Tris-buffer (1/1, v/v, pH = 7.0), [L] = 10 μ M, [Fe³⁺] = 80 μ M. The unit of *x* is mol/L.

Figure S18. Cascade fluorescence OFF-ON-OFF response of probe L with alternate addition of Fe^{3+} cation and PO_4^{3-} anion.

Figure S19. Reversibility of the Fe^{3+} sensing process against the addition of chelating agent EDTA.