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The dependence of L on h in both CLHL and COHL cases. 

   Both LCLHL and LCOHL increase linearly with increasing h, as shown in Figures S1 and 
S2. The plots show a non-linear dependence of L on d. Just as mentioned in the 
manuscript, there exists a critical point for d, below which the increasing slope of L with 
increasing h is much slower; above the critical point of d, the increase becomes much 
steeper with the increase of h.       

       Figure S1│ Plots of LCLHL vs. h with fixed R and d.
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       Figure S2│Plots of LCOHL vs. h with fixed R and d.

Derivation of the helical length formula of a COHL structure 
The equation of the COHL can be parameterized using the rotation angle θ in a 

cylindrical coordinate. Therefore, the parametric equation of the COHL can be described 
in Eq. 1,
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The helical length of the COHL (LCOHL) can be obtained through the curve integral as 
exhibited in Eq. 2.
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Substituting Eq.1 into Eq. 2, we then obtain Eq. 3,
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To simplify the derivation, we denote the coefficient  as a,  as 2cot  (2 / ) cotR v 
b and the integrand  as F. Therefore, Eq. 3 can be solved through the 2 1/2( )a b c  
following integrals in Eqs. 4 and 5 by assuming a＞0 and 4ac-b2＞0.
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Substituting Eq. 4 into Eq. 5, we get Eq. 6.
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By replacing a, b, c and F in Eq. 6 with the original form, we finally obtain the helical 
length LCOHL as shown in Eq. 7.
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   Simplifying the result by replacing  with R(θ), we get Eq. 8.cotR v 
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By replacing v with v=d/2π, and R(θ) with , we get the final form of the cotR v 

helical length LCOHL, written as Eq. 9, where .
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