Supporting Information

DNA/BSA binding, DNA cleavage and electrochemical properties of new multidentate copper(II) complexes

Elumalai Sundaravadivel^a, Sairaj Vedavalli, Muthusamy Kandaswamy ^{a*}, Babu Varghese^b

and Perumal Madankumar^c

E-mail: <u>mkands@yahoo.com</u>

*aDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025,

India

^bSophisticated Analytical Instruments Facility, Indian Institute of Technology, Chennai 600 036, India

^cDepartment of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Fig. S1. ESI-MS spectrum of mono nuclear complexes (1) and (2)

Fig. S1. ESI-MS spectrum of mono nuclear complexes (3) and (5)

Fig. S1. ESI-MS spectrum of mono nuclear complex (5)

Table S1. Hydrogen bonds for complex 1 [A and deg.].

D-HA	d(D-H) d((HA)	d(DA) <(DHA)	
N(4)-H(4A)O(2)	0.849(18)	1.95(3)	2.620(4) 135(3)	
C(4)-H(4)O(6)#1	0.93	2.61	3.261(12) 127.7	
C(7)-H(7)O(4)#2	0.93	2.29	3.218(8) 173.1	
C(18)-H(18A)O(6)	#3 0.97	2.75	3.622(14) 149.7	
C(14)-H(14)O(5)#	3 0.93	2.49	3.216(9) 135.1	
C(17)-H(17A)O(4)) 0.97	2.57	3.470(9) 154.2	

Fig. S2 Absorption spectra of the complex (4) and (5) in the absence and presence of increasing amounts of CT-DNA ($0 - 250 \mu$ M) at 25 °C in 50 mM Tris-HCl (pH = 7.2).

Fig. S3 Emission spectra ($\lambda_{ex} = 520$ nm) of EB-DNA in Tris-HCl buffer in the absence and presence of the Complex (4). [EtBr] = 4 μ M, [DNA] = 40 μ M. Arrow shows the decrease on intensity of EtBr-DNA upon increasing the concentration of complex.

Fig. S4 Gel electrophoresis diagrams shows the cleavage of supercoiled pBR322 DNA (150 μ g mL⁻¹) by copper(II) complexes (**3**) (0.03 mM) in presence of mercaptoethanol(ME) (1 mM) as reducing agent in (50 mM)Tris-HCl buffer at pH 7.2 and 37 °C with an incubation time of 3 h and different quenchers. Lane 1, DNA control; Lane 2, DNA + ME + Cu(ClO₄)₂.6H₂O; Lane 3, DNA + ME + (**3**); Lane 4, DNA + ME + (**3**) + NaN₃ (2 μ L); Lane 5, DNA + ME + (**3**) + L-histidine (1 mM); Lane 6, DNA + ME + (**3**) + DMSO (1 mM); Lane 7, DNA + ME + (**3**) + KI; Lane 8, DNA + ME + (**3**) + SOD (5 units);

Fig. S5 Changes in the fluorescence spectra and double-logrithm plot of BSA upon increasing complex (2) and complex (3) concentration at 300 K. The concentration of BSA is 1 μ M and complex concentration range from 0.0 to 10 μ M, pH = 7.2 and λ ex = 280 nm.

Fig. S5 Changes in the fluorescence spectra and double-logrithm plot of BSA upon increasing complex (4) and complex (5) concentration at 300 K. The concentration of BSA is 1 μ M and complex concentration range from 0.0 to 10 μ M, pH = 7.2 and λ ex = 280 nm.

Compound - 5

PA-Pseudomonas aeruginosa KP-Klebsiella pneumoniae EC-Escherichia coli

Fig. S6 Antimicrobial activity of complex (**5**) against S. aureus, B.subtilis, E. faecalis, P. mirabilis, P. aeruginosa, K. pneumoniae and E. coli.

		Concentration			
	Organisms	50 µg	75 µg	100 µg	
(5)		Zone of inhibition, mm			
	Staphylococcus aureus	12	15	17	
	Bacillus subtilis	11	12	16	
	Enterococcus faecalis	11	14	15	
	Proteus mirabilis	11	12	15	
	Pseudomonas aeruginosa	14	18	22	
	Klebsiella pneumonia	12	16	16	
	Escherichia coli	11	12	17	

Table s2 Antimicrobial activity of complex (5)