Supporting Information

Molecular Stacking Structure and Field-Effect Transistor Characteristics of Crystalline Poly(3-hexylthiophene)-*block*-Syndiotactic Polypropylene through Solvent Selectivity

Chen-Tsyr Lo,¹ Chih-Jung Lin,¹ Jing-Yu Lee,² Shih-Huang Tung,³

Jing-Cherng Tsai,^{2,*} and Wen-Chang Chen^{1,*}

¹Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.

²Department of Chemical Engineering, National Chung Cheng University, Chia-Yi

62142, Taiwan.

³Institute of Polymer Science and Engineering, National Taiwan university, Taipei 10617, Taiwan

*Author to whom all correspondence should be addressed: <u>chenwc@ntu.edu.tw</u>(W. C. Chen); <u>chmjct@ccu.edu.tw</u> (J. C. Tsai)

 Table S1. Polymerization conditions, molecular weights, and thermal properties of azide

 capped sPP, ethynyl-capped P3HT and the corresponding diblock copolymers, P3HT-*b*

Entry	Polymer ^a	M_n^{b}	PDI ^b	H-T ratio ^c	[rrrr] ^d	$T_{\rm d}^{\rm e}$	(9	T _c ^f PC)	T ₁ (°	m ^f C)
		(g/mol)		(%)	(70)	(~C)	sPP	РЗНТ	sPP	РЗНТ
A1	$\mathbf{P3HT}_1$	16,000	1.13	97.5	_	_	_	_	_	_
A2	P3HT ₂	16,200	1.09	97.7	_	_	_	_	_	_
C1	sPP _{3k}	3,400	1.25		87.5	279.64	_	_	_	—
C2	sPP _{14k}	14,600	1.42		88.7	367.76	_	_	_	—
P1	A1-b-C1	19,000	1.13		_	418.35	58.16	190.16	118.62	223.12
P2	A2-b-C2	31,800	1.30		_	407.92	88.52	183.16	147.10	222.55

sPP.

^a Propylene polymerization condition: toluene 50 mL; [Zr]=2.5×10⁻⁶ mole; Al/Zr=2000;

propylene pressure = 1 bar; time = 30 min; Temperature, T_p =25 °C.

^b Molecular weight (M_n) and molecular weight distribution $(M_w/M_n, PDI)$ were

determined by high-temperature GPC at 110 °C with 1,2,4-chlorobenzene as solvent.

^c Head-to-tail (H-T) ratio was determined by ¹H NMR analyses.

^d Syndiotactity (rrrr) was determined by ¹³C NMR analyses.

^e Decomposed temperature (T_d) was obtained from TGA analyses.

^f Crystallization temperature (T_c) and Melting point (T_m) were obtained from DSC analyses.

CF content (vol %)	XP3HT -solvent	χ_{sPP} -solvent
100	0.031	0.394
70	0.097	0.282
30	0.262	0.146

Table S2. The calculated results of Flory-Huggins interaction parameter between polymer and solvent ($\chi_{polymer-solvent}$).

The Flory-Huggins interaction parameter between the assigned polymer block and the solvent mixture, $\chi_{polymer-solvent}$, is generally employed to predict the microphase separation inside the block copolymers. Equation 1 is generally employed to calculate $\chi_{polymer-solvent}$, which is correlated to the solubility parameters δ of both the assigned polymer and the solvent mixture:

$$\chi_{\text{polymer-solvent}} = (\delta_{\text{polymer}} - \delta_{\text{solvent}})^2 \tilde{V}/RT$$
(1)

where T is the temperature, R is the gas constant, and \tilde{V} is the molar volume of the solvent mixture.

Moreover, the values of δ_{solvent} and \tilde{V} may vary with the solvent ratios of solvent mixture. Therefore, the simple addition rule is commonly applied:

$$\delta_{\text{solvent}} = X_{\text{v},1}\delta_1 + X_{\text{v},2}\delta_2 \tag{2}$$

where δ_{mixture} is the solubility parameter of a solvent mixture, $X_{v,1}$ is the volume fraction of solvent 1 with solubility parameter δ_1 , $X_{v,2}$ is the volume fraction of solvent 2 with solubility parameter δ_2 . Same rule is applied to obtain the molar volume of the solvent mixture \tilde{V} :

$$\tilde{V} = X_{v,1}\tilde{V}_1 + X_{v,2}\tilde{V}_2$$
(3)

In our case, the polymer 1 and 2 are CF and CH, respectively.^[1-3]

References

- [1] Y.-H. Lee, W.-C. Yen, W.-F. Su, C.-A. Dai, Soft Matter 2011, 7, 10429.
- [2] Y. Lee, J. K. Kim, C.-H. Chiu, Y.-K. Lan, C.-I. Huang, Polymer 2009, 50, 4944.
- [3] D. Pospiech, A. Gottwald, D. Jehnichen, P. Friedel, A. John, C. Harnisch, D. Voigt,
- G. Khimich, A. Bilibin, Colloid. Polym. Sci. 2002, 280, 1027.

Figure S1. ¹H NMR Spectra (500 MHz) of P1 (P3HT_{16K}-*b*-sPP_{3K}) ($M_n = 19000$ g/mol;

PDI = 1.14; P3HT H-T ratio = 97.5 %) in CDCl₃ (temperature = 50° C).

Figure S2. ¹H NMR Spectra (500 MHz) of P2 (P3HT_{16K}-*b*-sPP_{14K}) (M_n = 31800 g/mol;

PDI = 1.30; P3HT H-T ratio = 97.7 %) in CDCl₃ (temperature = 50° C).

Figure S3. Two-dimensional GIWAXS patterns of P3HT homopolymer prepared from

solvent mixtures with different CF content (vol. %).

Figure S4. SAXS measurements on the P1 sample prepared from pure chloroform (CF) without further annealing