Single-walled carbon nanohorns with a unique horn-shaped structure as a scaffold for lithium-sulfur batteries

Wangliang Wu^{a,b,c}, Yi Zhao^{a,b}, Chuxin Wu^{a,b}, Lunhui Guan^{a,b*}

1. Experimental section

Preparation of the C-S composite: The C-S composite was prepared via a facile melt-diffusion strategy. SWCNHs used here were produced by a simple arc-discharge method.¹ Typically, carbon material (SWCNHs or MWCNTs) and sulfur with weight ratios of 1:4 were dissolved in 5 ml CS₂ to form a homogeneous solution under ultrasonic radiation. Subsequently, CS₂ was allowed to completely evaporate from the solution under magnetic stir to obtain the C-S composite. The final C-S product was placed in a crucible, then heated to 155 °C and kept at that temperature for 24 h in an argon environment. The composite was denoted as SWCNHs-S or MWCNTs-S.

2. Material characterization

The structure and morphology of composites were characterized by X-ray diffraction (XRD, RIGAKU SCXmini), scanning electron microscope (SEM, JSM-6700F), and transmission electron microscope (TEM, Tecnai G2 F20). Thermal gravimetric analysis (TGA, NETZSCH STA449 C) tests were measured from 30 to 600 °C at a heating rate of 10 K min⁻¹ in a N₂ environment to evaluate the weight content of sulfur in the composites. The nitrogen adsorption/desorption isotherms and the pore size distribution were determined by Brunauer-Emmett-Teller (BET) measurements using an ASAP-2020 surface area analyzer. The pore size distribution was calculated from the desorption data using the Barret-Joyner-Halenda (BJH) modal.

3. Electrochemical test

The electrochemical tests were performed via CR2025 coin-type test cells which were fabricated in an argon-filled glove box using lithium metal as the counter electrode and a Celgard 2300 membrane. The cathode slurry was prepared by mixing 80 wt% C-S composite, 10 wt% conducting carbon (ketjen black, KB), and 10 wt% polyvinylidene fluoride (PVDF) in N-methyl-2-prrolidone (NMP) solvent dispersant. Positive electrodes were produced by pasting the slurry on Ni foam and then drying at 60 °C for 12 h. The electrolyte solution was 1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in a mixed solvent of 1,2-dimethoxy ethane (DME) and 1,3-dioxolane (DOL) (a volume ratio of 1 : 1) with 0.25 M lithium nitrate addictive (LiNO₃). The charge-discharge performance of the cells was tested with LAND CT-2001A instrument. The cut-off potentials were 1.9 and 2.7 V at room temperature. Cyclic voltammetry (CV) tests were performed on a CHI660C Electrochemical Workstation. The cut-off potentials were 1.8 and 2.8 V at room temperature. The specific capacity of the electrodes was calculated on the mass of elemental sulfur.

	-		
Samples	BET surface area	Total pore volume	
	(m ² g ⁻¹)	(cm ³ g ⁻¹)	
SWCNHs	203	0.48	
SWCNHs-S	0.94	0.01	

Table 1 Textural characteristic of samples

Fig. S3 Cyclic voltammogram of the SWCNHs-S electrode.

As seen in the Fig. S3, the reduction peak shifts to higher potentials and the oxidation peak shifts to lower potentials upon cycling, indicating improved reversibility of the cell. ² Meanwhile, their peak intensity and integrated area mostly became coincidence in the successive cycles, validating the good cycling performance of the SWCNHs-S electrode.

Fig. S4 (a) a low-magnification FESEM image of SWCNHs-S composite; (b) Elemental mapping of sulfur and (c) carbon.

Table 2 Comparison of the performances of the Li-S batteries based on the SWCNH	S
with those of other typically carbon matrix	

	BET	Total	S	Cycle performance	
Classification	surface	pore	content	of the	Ref.
	area	volume	(wt %)	composites(1C=1675	
	$(m^2 g^{-1})$	$(m^3 g^{-1})$		mA g ⁻¹)	
SWCNHs	203	0.48	76	693 mAh g ⁻¹ /1600	Our work
				mA g ⁻¹ /100 th cycle	
SWCNTs	798	1.72	55.6	441 mAh g ⁻¹ /1	1
				C/100 th cycle	
	598	2.61	67	424 mAh g ⁻¹ /0.2	2
				C/100 th cycle	
Graphene			44.5	662 mAh g ⁻¹ /1	3
				C/100 th cycle	
			73	615 mAh g ⁻	4
				¹ /1C/100 th cycle	
GO			66	954 mAh g⁻	5
				¹ /0.1C/50 th cycle	
Mesoporous	1472	2.28	57.2	878 mAh g-	6
carbon				¹ /0.05C/50 th cycle	
	1175	4.8	83.2	613 mAh g	7
				¹ /0.1C/50 th cycle	

-- These values are not obtained in the literature.

References:

- 1. S. M. Zhang, Q. Zhang, J. Q. Huang, X. F. Liu, W. Zhu, M. Q. Zhao, W. Z. Qian and F. Wei, *Part. Part. Syst. Charact.*, 2013, **30**, 158-165.
- 2. N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao and Y. Shi, *Chem Commun (Camb)*, 2012, **48**, 4106-4108.
- 3. B. Wang, K. Li, D. Su, H. Ahn and G. Wang, *Chemistry, an Asian journal*, 2012, **7**, 1637-1643.
- 4. T. Lin, Y. Tang, Y. Wang, H. Bi, Z. Liu, F. Huang, X. Xie and M. Jiang, *Energy Environ. Sci.*, 2013, **6**, 1283.
- 5. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns and Y. Zhang, *Journal of the American Chemical Society*, 2011, **133**, 18522-18525.
- 6. X. Tao, X. Chen, Y. Xia, H. Huang, Y. Gan, R. Wu, F. Chen and W. zhang, *Journal of Materials Chemistry A*, 2013, **1**, 3295.
- 7. X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. Nie, J. Mietek, J.-G. Zhang, B. Schwenzer and J. Liu, *Journal of Materials Chemistry*, 2011, **21**, 16603.