Origin and effect of In-Sn ordering in InSnCo₃S₂: a neutron diffraction and DFT study

Jan Rothballer,^a Frederik Bachhuber,^{a,b}Stefan M. Rommel,^a Tilo Söhnel^{a,c,*} and Richard Weihrich^{a,*}

Supplementary information

Content

- 1. VASP data including novel optimisations
- 2. Comparison of VASP-PAW and CRYSTAL-PBE optimisations
- 3. Parameters from CRYSTAL09 and CRYSTAL98 calculations

1. VASP data including novel optimisations

Table S1: Crystal structure data from VASP PAW-PBE optimisations for partial site occupation

Scheme	In/%	Sn/%	a _{Sup} /Å	α_{Sup} /°	V _{sup} /Å ³	V _{prim} /ų	a _{rh} /Å	$\alpha_{\sf rh}$ /°	a _{hex} /Å	2a _{hex} /Å	c _{hex} /Å
	0	100	7.598	89.976	438.500	109.660	5.374	59.980	5.372	10.744	13.164
а	12.5	87.5	7.596	89.587	438.200	109.550	5.390	59.530	5.352	10.704	13.250
b	12.5	87.5	7.600	89.927	438.920	109.730	5.377	59.920	5.371	10.741	13.179
а	37.5	62.5	7.609	88.580	440.150	110.038	5.447	58.390	5.314	10.627	13.502
b	37.5	62.5	7.611	89.829	440.870	110.218	5.390	59.800	5.373	10.747	13.222
а	50	50	7.616	88.074	441.070	110.239	5.475	57.820	5.294	10.587	13.628
b	50	50	7.617	88.457	441.370	110.361	5.458	58.250	5.313	10.626	13.543
с	50	50	7.615	89.276	441.440	110.333	5.418	59.170	5.354	10.708	13.354
d	50	50	7.616	89.754	441.700	110.425	5.397	59.720	5.374	10.748	13.247
а	62	38	7.619	89.347	442.156	110.539	5.519	58.062	5.357	10.713	13.346
b	62	38	7.618	88.201	441.453	110.363	5.471	57.965	5.301	10.603	13.603
а	88	12	7.632	88.261	443.897	110.974	5.478	58.031	5.314	10.628	13.614
b	88	12	7.628	88.562	443.411	110.853	5.461	58.366	5.326	10.651	13.539
	100	0	7.639	88.231	445.091	111.273	5.484	57.998	5.317	10.635	13.633

Fig. S2: Summarized crystal structure data obtained from VASP PAW-PBE optimisations for ordered structures of $In_xSn_{2-x}Co_3S_2$ (diamond symbol) and compared to experimental XRD (cross, triangle) and Neutron (square) diffraction data.

2. Comparison of VASP-PAW and CRYSTAL-PBE optimisations

Fig. S1: Optimisations of a_{hex} (top) and c_{hex} axis (bottom) from VASP-PAW-PBE (right) and CRYSTAL-PBE (left) compared to data from Weihrich et al. (2006, Ref. 4b), Vaqueiro et al. (2013, Ref. 8), and present neutron data; dba and dbb (CRYSTAL09 calculations) as well as vsp and vsp2 denote the respective ordering variants with In and Sn preferably on A1 and A2 sites.

x(In)		a _{sup} /Å	$\alpha_{sup}/^{\circ}$	V _{sup} /ų	V _{rh} /ų	2 a	a _{hex} /Å
	0	7.598	89.98	438.5	109.625	10.7433	13.1647
	0.25	7.596	89.57	438.2	109.55	10.702	13.25503
	0.77	7.60909	88.58	440.15	110.0375	10.6267	13.502
	1	7.61627	88.0745	441	110.25	10.5885	13.6278
	1.25	7.61795	88.2	441.45	110.3625	10.6027	13.6027
	1.75	7.6317	88.26	443.41	110.8525	10.6277	13.6139
	2	7.6387	88.23	445.1	111.275	10.6346	13.6332

Table S2: Crystal structure data from VASP PAW-PBE optimisations for partial site occupation

x(ln)		a _{sup} /Å	$\alpha_{sup}/^{\circ}$	V _{sup} /ų	V _{rh} /ų	2 a		a _{hex} /Å
	0	7.598	89.98	438.5	109.625	1	10.7433	13.1647
	0.25	7.6	89.927	438.9	109.725	1	10.7412	13.1804
	0.77	7.6095	89.82	440.9	110.225	1	10.7445	13.2214
	1	7.614	89.77	441.7	110.425	1	10.7462	13.2407
	1.25	7.6188	89.35	442.16	110.54	1	10.7133	13.3450
	1.75	7.6279	88.56	443.9	110.975	1	10.6564	13.5466
	2	7.639	88.23	445.1	111.275	1	10.6346	13.6332

Table S3: Crystal structure data from CRYSTAL (PBE) optimisations (from Ref. 6)

x(ln)		a _{sup} /Å	$\alpha_{sup}/^{\circ}$	2 a _{hex} /Å	c _{hex} /Å	V _{sup} /ų	V _{rh} /ų
	0	7.596	90.048	10.747	13.146	438.270	109.568
	0.25	7.596	89.556	10.700	13.258	438.169	109.542
	0.75	7.608	88.457	10.614	13.528	439.909	109.977
	1	7.618	87.855	10.570	13.680	441.265	110.316
	1.25	7.621	88.030	10.591	13.646	441.830	110.458
	1.75	7.635	88.172	10.625	13.640	444.482	111.120
	2	7.641	88.200	10.636	13.641	445.500	111.375

x(In)		a _{sup} /Å	α_{sup} /°	2 a _{hex} /Å	c _{hex} /Å	V _{sup} /ų	V _{rh} /ų
	0	7.596	90.048	10.747	13.146	438.270	109.568
	0.25	7.603	89.998	10.752	13.169	439.430	109.858
	0.75	7.609	89.913	10.752	13.199	440.465	110.116
	1	7.618	89.761	10.751	13.250	442.140	110.535
	1.25	7.619	89.409	10.719	13.331	442.163	110.541
	1.75	7.633	88.582	10.660	13.544	444.300	111.075
	2	7.642	88.220	10.638	13.641	445.600	111.400

Table S4: Crystal structure data from vasp optimisations

a = 7.6164 Å, α = 88.04° In 0,0,0 Sn 0,0,-1/2 In 0,-1/2,-1/2 Sn -1/2,-1/2,-1/2 Co -0.000003754,-0.25,-0.25 Co 0.25,-1/2,-0.25 S 0.27860,0.77860,0.77860 S 0.27860, 0.27860, 0.27860 7.6165, 88.42 Sn 0,0,0 Sn 0,0,1/2 In 0,1/2,1/2 In 1/2,1/2,1/2 Co 0.0057,0.75748,0.75748 Co 0.2479,0.500,0.752093 S 0.2861,0.7769,0.776915 S 0.27383,0.2738,0.27382 7.6051, 89.37 In 0,0,0 In 0,0,-1/2 Sn 0,-1/2,-1/2 Sn -1/2,-1/2,-1/2 Co -0.00529,-0.25737,-0.25737 Co 0.25176,-1/2,-0.25176 S 0.2786, 0.7786, 0.7786 S 0.2786, 0.2786, 0.2786 7.6145, 89.77 Sn 0,0,0 In 0,0,-1/2 Sn 0,-1/2,-1/2 In -1/2,-1/2,-1/2 Co 0.0000,-0.25000,-0.2500 Co 0.2500,-1/2,-0.2500 S 0.27864, 0.77864, 0.77864

3. Parameters from CRYSTAL09 calculations

Table S5: Parameters for combined cell/atom optimisation control with CRYSTAL09

Initial trust radius 0.50000 Maximum trust radius 4.00000 Max. Gradient component 0.00045 Max. displacement Component 0.00180 R.M.S. of gradient component 0.00030 R.M.S. of displacement components 0.00120 Threshold on energy change 0.100E-06 Extrapolating polynomial order 2 Maximum allowed number of steps 100 Sorting of energy points NO Analytical gradient; hessian updating scheme: BFGS Step size numerical gradient 0.00100 Initial hessian matrix: Schlegel model 2

Table S6: CRYSTAL basis sets

S 0.27864, 0.27864, 0.27864

50 10 0 0 9 2.0 1.0458 3806666.0 0.0000486 563891.0 0.000387

122419.0 0.00226 31093.6 0.0112 8965.23 0.0463 2854.46 0.1549 1010.09 0.3509 400.714 0.4274 167.996 0.1915 0 1 7 8.0 1.0525 10902.6 -0.000294 0.00105 2533.25 -0.00619 0.00956 776.793 -0.0529 0.0566 275.142 -0.1471 0.217 110.753 0.1297 0.4521 51.0837 0.6009 0.4376 24.547 0.4365 0.1928 0 1 6 8.0 1.0627 237.278 0.00651 -0.0141 92.5742 -0.0316 -0.0688 38.7016 -0.3216 0.0254 17.4351 -0.00044 0.8574 8.1474 0.9163 1.2949 3.8907 0.4327 0.4281 03610.01.0 353.314 0.0133 105.158 0.0929 39.3208 0.2993 16.2335 0.4698 7.0573 0.3195 2.8399 0.0524 0138.01.0 7.1527 - 4.6228 - 0.0721 3.4236 1.5501 0.5727 1.5342 10.7304 0.9749 0114.01.0 0.6743 1.0 1.0 0 3 3 10.0 1.0 5.4496 0.2114 2.1373 0.5395 0.8455 0.4545 0310.01.0 0.3154 1.0 0110.01.0 0.2873 1.0 1.0 0110.01.0 0.14 1.0 1.0 49 10 0 0 9 2.0 1.0229 3806666.0 0.0000487 565677.0 0.000386 122672.0 0.00225 31208.0 0.0112 8973.58 0.0464 2855.32 0.1551 1009.92 0.3512 400.013 0.427 167.569 0.1887 0 1 7 8.0 1.0262 11017.4 -0.00033 0.00104 2546.93 -0.00642 0.00957 778.611 -0.0539 0.0566 275.526 -0.1475 0.2171 110.525 0.1374 0.4533 50.5711 0.6125 0.4345 24.3037 0.4209 0.1836 0 1 6 8.0 1.0314

239.102 0.00648 -0.0146 92.7375 -0.0325 -0.0705 39.0152 -0.3244 0.0317 17.4499 0.0117 0.8767 8.1698 0.9158 1.2929 3.9132 0.4324 0.441 03610.01.0 342.52 0.0128 102.01 0.0894 38.0838 0.2915 15.6905 0.4663 6.77 0.3293 2.7107 0.0554 0138.01.0 6.5969 -4.5838 -0.0762 3.1744 1.9149 0.5664 1.4127 9.9244 0.8942 0113.01.0 0.6351 1.0 1.0 0 3 3 10.0 1.0 5.0783 0.1939 1.9711 0.5072 0.7589 0.4477 0310.01.0 0.315 1.0 0110.01.0 0.285 1.0 1.0 0110.01.0 0.14 1.0 1.0 278 0082.01.0 341701.0 0.000227 48850.0 0.001929 10400.9 0.0111 2718.99 0.0501 819.661 0.1705 283.878 0.3692 111.017 0.4033 46.4757 0.1433 0 1 6 8.0 1.0 855.558 -0.0054 0.0088 206.504 -0.0684 0.062 69.0516 -0.1316 0.2165 27.2653 0.2616 0.4095 11.5384 0.6287 0.3932 4.2017 0.2706 0.225 0 1 4 8.0 1.0 51.5542 0.0182 -0.0287 18.9092 -0.2432 -0.0937 7.7251 -0.849 0.2036 3.5428 0.8264 1.4188 0 1 1 2.0 1.0 1.4914 1.0 1.0 0 1 1 0.0 1.0 0.6031 1.0 1.0 $0\,1\,1\,0\,1$ 0.15 1 1 0347.01.0 29.9009 0.0617 8.1164 0.2835 2.6433 0.529 0.8869 0.4976 0 3 1 0.0 1.0 0.29 1.0 16 6

0082.01.0 109211.0 0.0002520 16235.206 0.0019934 3573.0286 0.0111177 943.23811 0.0498945 287.26179 0.1661455 99.914226 0.3627018 38.602137 0.4108787 15.531224 0.1457875 0168.01.0 281.22171 -0.0057780 0.0081427 67.106575 -0.0665855 0.0565570 21.794135 -0.1203552 0.2039582 8.2097646 0.2741310 0.3973328 3.4178289 0.6463829 0.3946313 1.5452225 0.2925792 0.1544345 0136.01.0 4.3752432 -0.1750000 -0.0613439 1.8096201 -0.5938952 0.1272251 0.6833985 0.8298996 1.2215893 $0\;1\;1\;0.0\;1.0$ 0.28 1.0 1.0 0110.01.0 0.18 1.0 1.0 0 3 1 0.0 1.0 0.45 1.0 216 3 DURAND 0136.01.0 2.827768 -0.354607 -0.056186 2.093537 0.688656 0.0456255 0.491587 -0.656475 0.537546 0110.01.0 0.185 1.0 1.0 0310.01.0 0.45 1.0