Pyrene pyridine- conjugate as Ag selective Fluorescent chemosensor

K. Velmurugan^a, A. Raman^b, S. Easwaramoorthi^{b,*}, R. Nandhakumar^{a,*}

^aDepartment of Chemistry, Karunya University, Coimbatore-641 114, India. *E-mail: <u>nandhakumar@karunya.edu</u> ^bChemical Laboratory, CSIR-Central Leather Research Institute, Adyar, India *E-mail: <u>moorthi@clri.res.in</u>

Contents

1.	Fig. S1	¹ H NMR Spectrum of 2	S2
2.	Fig. S2	¹³ C NMR Spectrum of 2	S2
3.	Fig. S3	¹ H NMR Spectrum of PPC	S3
4.	Fig. S4	¹³ C NMR Spectrum of PPC	S3
5.	Fig. S5	Mass Spectrum of PPC	S4

6.	Fig. S6	Mass Spectrum of PPC + Ag^+	S4
7.	Fig. S7	UV-visible absorption spectrum of PPC	S5
8.	Fig. S8	The detection limits calculation of PPC with Ag ⁺	S5
9.	Fig. S9	Geometry of the PPC optimized using Gaussian 03 at B3LYP	S6
		/6-31G level of theory	
10.	Fig. S10	Highest occupied molecular orbital (top) and Lowest	S 7
		Unoccupied Molecular Orbital (bottom) of PPC calculated	
		using Gaussian 03 software at B3LYP /6-31G level of theory	
11.	Fig. S11	Geometry of the PPC+Ag ⁺ optimized using Gaussian 03 at	S 8
		B3LYP /GenECP level of theory	
12.	Fig. S12	Highest Occupied Molecular Orbital (top) Lowest Unoccupied Molecular Orbital (bottom) of PPC+Ag ⁺ calculated using	S9
		Gaussian 03 at B3LYP /GenECP level of theory	
13.	Fig. S13	Selectivity Coefficient of PPC with Ag ⁺ ion	S10

Fig. S1. ¹H NMR spectra of compound 2

Fig. S2. ¹³C NMR spectra of compound 2

Fig. S3. ¹H NMR Spectrum of PPC

Fig. S4. ¹³C NMR Spectrum of PPC

Fig. S5. Mass Spectrum of PPC

Fig. S7. UV-visible absorption spectrum of PPC in different concentrations (DMSO $/H_2O$,

1;1 v/v, HEPES = 50 mM, pH=7.4)

Fig. S8. The detection limit of PPC with Ag^+

LOD= $0.29 \times 10^{-8} M^{-1}$

 $LOQ = 0.88 X 10^{-8} M^{-1}$

Fig. S9. Geometry of the PPC optimized using Gaussian 03 at B3LYP /6-31G level of theory

Fig. S10. Highest occupied molecular orbital (top) and Lowest Unoccupied Molecular Orbital (bottom) of **PPC** calculated using Gaussian 03 software at B3LYP /6-31G level of theory

Fig. S11. Geometry of the **PPC+Ag**⁺ optimized using Gaussian 03 at B3LYP /GenECP level of theory

Fig. S12. Highest Occupied Molecular Orbital (top) Lowest Unoccupied Molecular Orbital (bottom) of **PPC+Ag**⁺ calculated using Gaussian 03 at B3LYP /GenECP level of theory

Fig. S13. Selectivity coefficient of PPC with Ag⁺ ion

S11