Hydrogen Bond Donor-Acceptor-Donor Organocatalysis for Conjugate Addition of Benzylidene Barbiturates via Complementary DAD-ADA Hydrogen Bonding

Franco King-Chi Leung, Jian-Fang Cui, Tsz-Wai Hui, Zhong-Yuan Zhou and Man-Kin Wong*

State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

Supporting Information

General Methods

Chemicals purchased from commercial sources were used without further purification. Flash column chromatography was performed using silica gel 60 (230-400 mesh ASTM) with ethyl acetate/n-hexane as eluent. Melting points were recorded by Bamstead Electrothermal 9100. ¹H NMR and ¹³C NMR spectra were recorded on Varian AS-400 or Varian AS-500 or Bruker DPX-400 spectrometers. Chemical shifts (ppm) were referenced to TMS and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s, singlet; br s, broad singlet; d, doublet; dd, double doublet; br d, broad doublet; t, triplet; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). IR spectra were recorded on a FT-IR Nicolet-380 spectrometer. Low resolution mass spectra (MS) and high resolution mass spectra (HR-MS) were measured on Waters Q-TOF 2TM with a positive ESI source. X-ray crystal structures were obtained by Bruker CCD area detector diffractometer. UV/Vis. titration experiments were monitored by Hewlett Packard 8453 Photo-diode Array UV-Visible spectrometer.

General Procedure for Synthesis of HB-DAD Organocatalysts 1a and 3a: A mixture of 2,6-diamino-N-heterocyclic compounds (1.0 mmol) and trifluoroacetic anhydride (3.0 mmol) in CH₂Cl₂ (10 mL) was stirred under nitrogen atmosphere at room temperature for 24 h. The reaction mixture was added with water (5 mL) and extracted with ethyl acetate (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel using ethyl acetate-hexane as eluent to give 1a (58% yield) and 3a (68% yield).

General Procedure for Synthesis of HB-DAD Organocatalysts 1b, 1c, 3b and 3c: A mixture of 2,6-diamino-N-heterocyclic compounds (1.0 mmol), acid chloride (2.5 mmol), 4-dimethylaminopyridine (0.2 mmol) and triethylamine (2.5 mmol) in CH₂Cl₂ (10 mL) was stirred under nitrogen atmosphere at room temperature for 24 h. The reaction mixture was treated with water (5 mL) and extracted with ethyl acetate (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel using ethyl acetate-hexane as eluent to give 1b (15% yield), 1c (62% yield), 3b (58% yield) and 3c (62% yield).

General Procedure for Synthesis of Benzylidene Barbiturates: A mixture of barbiturate acid (2.0 mmol) and benzaldehyde (2.0 mmol) in EtOH (10 mL) was refluxed for 2-12 h. The reaction mixture was allowed to cool to room temperature and filtered to obtain solid /

crystalline crude products. The residue was purified by flash column chromatography on silica gel using ethyl acetate-hexane as eluent to give benzylidene barbiturates in 24-95% yield.

Procedure for Catalytic Conjugate Addition of Benzylidene Barbiturates: A mixture of benzylidene barbiturates **5** (0.05 mmol), 2-methylfuran (0.05 mmol) and HB-DAD organocatalyst (0.01 mmol) in CH_2Cl_2 (1 mL) was stirred at 25 °C for 24 h. The product yield was determined by crude ¹H NMR with toluene (0.02 mmol) as internal standard. The reaction mixture was concentrated. The residue was purified by flash column chromatography on silica gel using ethyl acetate-hexane as eluent to obtain isolated yield.

Optimization of Reaction Conditions of 1a-Catalyzed Conjugate Addition of 5a with 2-Methylfuran

As depicted in Table S1, a series of polar aprotic solvents gave good yield (entries 1-3). Particularly, the **1a**-catalyzed conjugate addition of **5a** in CH_2Cl_2 gave 61% yield (entry 1). The yield was further improved in the conjugate addition of **5a** using dried CH_2Cl_2 as solvent (3.0; entry 4). However, no yield increase of the reaction was observed in 48 h (2.0; entry 5). In addition, no yield increase in the reaction was observed using acetone and toluene as solvents (entries 6 and 7). In this connection, CH_2Cl_2 was selected as solvent system for subsequent studies.

Table S1. Effect of solvent in 1a-catalyzed conjugate addition of 5a^[a]

Entry ^[a]	Solvent	NMR Yield (%) ^[b]	Background NMR Yield (%) ^[b, c]
1	CH_2Cl_2	61	28
2	CHCl ₃	51	24
3	CH ₃ CN	21	16
4 ^[d]	CH_2Cl_2	69	23
5 ^[e]	CH_2Cl_2	60	30
6	Acetone	14	14
7 ^[f]	Toluene	trace	trace

^[a] Reaction conditions: **5a** (0.05 mmol), 2-methylfuran (0.05 mmol), **1a** (0.01 mmol), solvents (1 mL), 25 °C, 24 h. ^[b] Yields were determined by ¹H NMR of the crude product using toluene as the internal standard. ^[c] Without addition of **1a**. ^[d] Dried CH₂Cl₂. ^[e] For 48 h. ^[f] Ethyl acetate as the internal standard.

4

The conjugate addition of **5a**, using 50 mol% and 20 mol% of **1a**, gave 62% and 61% yield (Table S2; entries 1-2). A lower yield (49%) was observed in using of 10 mol% of **1a** (entry 3). No yield increase was observed in using 5 mol% of **1a** (entry 4). In this connection, using 20 mol% of **1a** in catalyzed conjugate addition of **5a** is more effective than using 50 mol% of **1a** in the reaction because of the same yield obtained in using of a lower quantity of **1a**.

$ \begin{array}{c} 0\\ HN \\ HN \\ O \\ H \\ S \\ 5a \end{array} $	0 1a CH₂Cl₂/ 25 ℃ / 24 h	
Entry ^[a]	Catalyst Loading (mol%)	NMR Yield (%) ^[b]
1	50	62
2	20	61
3	10	49
4	5	28
5	0	28
^[a] Reaction conditions: 5	a (0.05 mmol), 2-methylfura	un (0.05 mmol), 1a

Table S2. Effect of catalyst loading in 1a-catalyzed conjugate addition of 5a^[a]

^[a] Reaction conditions: **5a** (0.05 mmol), 2-methylfuran (0.05 mmol), **1a** (0.05-0.5 equiv.), CH_2Cl_2 (1 mL), 25 °C, 24 h. ^[b] Yields were determined by ¹H NMR of the crude product using toluene as the internal standard.

Only trace amount of **5a** was obtained in -20 $^{\circ}$ C of the conjugate addition of **5a** (Table S3; entry 1). 25% yield was afford when the present reaction was conducted in 0 $^{\circ}$ C (entry 2). The **1a**-catalyzed conjugate addition of **5a** worked smoothly in 25 $^{\circ}$ C to give good yield of adduct **6a** (entry 3). However, the no significant yield increase in the reaction carried at 40 $^{\circ}$ C (entry 4) and the background NMR yield (49%) increased observably. In balancing the yield of conjugate addition of **5a**, the subsequent studies of HB-DAD catalyzed conjugate addition could be performed in 25 $^{\circ}$ C.

	$ \begin{array}{c} $	0 CH ₂ Cl ₂ / 24	$ \begin{array}{c} $
Entry ^[a]	Temperature (°C)	NMR Yield (%) ^[b]	Background NMR Yield $(\%)^{[b, c]}$
1	-20	trace	trace
2	0	25	10
3	25	61	28

Table S3. Effect of reaction temperature in 1a-catalyzed conjugate addition of 5a^[a]

^[a] Reaction conditions: **5a** (0.05 mmol), 2-methyfuran (0.05 mmol), **1a** (0.01 mmol), CH₂Cl₂ (1 mL), 24 h. ^[b] Yields were determined by ¹H NMR of the crude product using toluene as the internal standard. ^[c] Without addition of **1a**.

Substrate Scope - Conjugate Additions of Benylidene Barbiturate with other Nucleophiles

We attempted to extend the substrate scope of **1a**-catalyzed conjugate addition of **5a** with different nucleophiles (Table S4). Using **5a** and nucleophiles including 1-methylindole, indole and 5-methoxylindole, the corresponding adducts (**6p**-**6r**) were obtained with lower yield in the presence of **1a** than without **1a** (entries 1-3). However, the conjugate additions of **5a** with thiophene, dibenzoylmethane and ethylbenzyolacetate gave no conversion of starting materials (entries 4-6).

	0 N H H 5a Nucleophil	1a (/ CH₂Cl₂ les	20 mol%) / 25 °C / 24 h `S	O HN N O H Nu 6p-6u
Entry ^[a]	Nucleophiles	Product	NMR Yield	Background NMR
			$(\%)^{[b]}$	Yield $(\%)^{[b, c]}$
1	N N	бр	62	72
2	N H	6q	63	76
3	-O N H	6r	39	45
4	s	6 s	0	0
5	Ph Ph	6t	0	0
6	O O Ph OEt	6u	0	0

Table S4. Substrate scope of 1a-catalyzed conjugate addition of 5a with other nucleophiles

^[a] Reaction conditions: **5a** (0.05 mmol), Nucleophile (0.05 mmol), **1a** (0.01 mmol), CH_2Cl_2 (1 mL), 25 °C, 24 h. ^[b] Yields were determined by ¹H NMR of the crude product using toluene as the internal standard. ^[c] Without addition of **1a**

We studied the substrate scope of thiourea A-catalyzed conjugate addition of **5a** with different nucleophiles (Table S5). Using **5a** and nucleophiles including 1-methylindole, indole and 5-methoxylindole, the corresponding adducts (**6p-6r**) were obtained were also obtained with lower yield in the presence of thiourea A than without thiourea A (entries 1-3). However, the conjugate additions of **5a** with thiophene, dibenzoylmethane and ethylbenzyolacetate gave no conversion of starting materials (entries 4-6).

Table S5. Substrate scope of Thiourea A-catalyzed conjugate addition of **5a** with other nucleophiles

r 1				
Entry ^[a]	Nucleophiles	Product	NMR Yield	Background NMR
			(%) ^[b]	Yield (%) ^[b, c]
1		бр	52	72
2	N H	6q	62	76
3	-o N H	6r	35	45
4	S ►	6 s	0	0
5	O O Ph Ph	6t	0	0
6	O O Ph OEt	6u	0	0

^[a] Reaction conditions: **5a** (0.05 mmol), Nucleophile (0.05 mmol), Thiourea A (0.01 mmol), CH_2Cl_2 (1 mL), 25 °C, 24 h. ^[b] Yields were determined by ¹H NMR of the crude product using toluene as the internal standard. ^[c] Without addition of **1a**.

Literature Reference of 2a-c, 4a-4c, 9 and Thiourea A

Compounds	Reference
	I. Bolz, D. Schaarschmidt, T. Ruffer, H. Lang and S.
F ₃ C ^N N ^N CF ₃ H H 2a	Spange, Angew. Chem. Int. Ed., 2009, 48, 7440.
	D. Benito-Garagorri, E. Becker, J. Wiedermann, W.
	Lackner, M. Pollak, K. Mereiter, J. Kisala and K.
2b	Kirchner, Organometallics, 2006, 25, 1900.
	Z. Xu, P. Daka, I. Budik, H. Wang, F. Q. Bai and H. X.
	Zhang, Eur. J. Org. Chem., 2009, 4581.
O O	M. Habel, C. Niederalt, S. Grimme, M. Nieger and F.
F ₃ C ^M N ^M CF ₃ H 4a	Vogtle, Eur. J. Org. Chem., 1998, 1471.
O U	J. Barluenga, J. M. Álvarez-Gutiérrez, A. Ballesteros and
[└] N [└] N ^{/↓} CF ₃	J. M. González, Angew. Chem. Int. Ed., 2007, 46, 1281.
4b	
	J. Barluenga, J. M. Álvarez-Gutiérrez, A. Ballesteros and
4c	J. M. González, Angew. Chem. Int. Ed., 2007, 46, 1281.
o n	M. Bauer and S. Spange, Angew. Chem. Int. Ed. 2011,
	50 , 9727.
N 9 N	
CF ₃ CF ₃	K. M. Lippert, K. Hof, D. Gerbig, D. Ley, H. Hausmann,
F ₃ C N N CF ₃	S. Guenther and P. R. Schreiner, <i>Eur. J. Org. Chem.</i> 2012, 5919.
Thiourea A	

Transparent crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.6$; 58% isolated yield; M.p. 80.0-81.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.84 (br s, 1H), 10.94 (br s, 1H), 7.95 (s, 1H); ¹³C NMR (100 MHz, *d*⁶-Acetone) δ 162.6, 158.80, 156.5 (q, ²*J*_{CF} = 39.4), 155.8, 154.1 (q, ²*J*_{CF} = 38.6), 115.4 (q, ¹*J*_{CF} = 286.7), 115.3 (q, ¹*J*_{CF} = 285.8), 107.1; IR ν_{max} (cm⁻¹) 3598, 3502, 1732, 1679; ESIMS *m*/*z* 337 [M+H⁺]; HRMS (ESI) for C₈H₄N₄O₂Cl [M+H]⁺ calcd: 336.9927, found: 336.9935; X-ray crystallography obtained.

White solid, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.6$; 15% isolated yield; M.p. 198.7-202.5 °C;¹H NMR (400 MHz, CDCl₃) δ 10.89 (br s, 1H), 9.66 (br s, 1H), 8.08 (s, 1H), 2.98 (br s, 2H), 2.51-5.54 (m, 2H), 1.70-1.74 (m, 4H), 1.36-1.39 (m, 8H), 0.91-0.94 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 174.4, 162.6, 160.5, 156.4, 105.1, 37.50, 37.49, 31.62, 31.55, 25.1, 24.7, 22.7, 22.6, 14.13, 14.10; IR v_{max} (cm⁻¹) 3281, 1716, 1671; ESIMS *m*/*z* 341 [M+H⁺]; HRMS (ESI) for C₁₆H₂₆N₄O₂Cl [M+H]⁺ calcd: 341.1744, found: 341.1740.

White solid, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.6$; 62% isolated yield; M.p. 128.0-129.9 °C; ¹H NMR (400 MHz, d^6 -Acetone) δ 10.11 (br s, 1H), 9.01 (br s, 1H), 7.92 (s, 1H), 1.34 (s, 9H), 1.32 (s, 9H); ¹³C NMR (100 MHz, d^6 -Acetone) δ 178.6, 176.0, 161.6, 160.7, 157.3, 104.0, 40.3, 40.2, 26.6, 26.4; IR v_{max} (cm⁻¹) 3576, 3479, 1697; ESIMS m/z 313 [M+H⁺]; HRMS (ESI) for C₁₄H₂₁N₄O₂ClNa [M+Na]⁺ calcd: 335.1251, found: 335.1241.

White solid, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.4$; 68% isolated yield; M.p. 194.2-195.8 °C; ¹H NMR (400 MHz, d^6 -Acetone) δ 11.00-11.02 (br s, 2H), 9.19 (s, 2H); ¹³C NMR (100 MHz, d^6 -Acetone) δ 155.62 (q, ² $J_{CF} = 40.8$), 145.1, 134.0, 115.9 (q, ¹ $J_{CF} = 228.8$); IR v_{max} (cm⁻¹) 3349, 3320, 1752, 1734; ESIMS *m*/*z* 303 [M+H⁺].

White solid, analytical TLC (silica gel 60) (ethyl acetate) $R_f = 0.1$; 58% isolated yield; M.p. 273.9-275.7 °C; ¹H NMR (400 MHz, d^6 -DMSO) δ 10.35 (br s, 2H), 8.97 (s, 2H), 2.43 (t, J = 7.0 Hz, 4H), 1.55-1.62 (m, 4H), 1.26-1.29 (m, 8H), 0.87 (t, J = 6.5 Hz, 6H); ¹³C NMR (100 MHz, d^6 -DMSO) δ 172.5, 146.6, 130.6, 35.8, 30.8, 24.6, 21.9, 13.9; IR v_{max} (cm⁻¹) 3336, 1685; ESIMS m/z 307 [M+H⁺]; HRMS (ESI) for C₁₆H₂₇N₄O₂ [M+H]⁺ calcd: 307.2134, found: 307.2149.

White solid, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.5$; 62% isolated yield; M.p. 147.6-149.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 145.8, 131.6, 40.0, 27.6; IR v_{max} (cm⁻¹) 3420, 1701; ESIMS *m*/*z* 279 [M+H⁺]; HRMS (ESI) for C₁₄H₂₃N₄O₂ [M+H]⁺ calcd: 279.1821, found: 279.1808.

E / *Z* mixture

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.5$; 73% isolated yield; M.p. 159.4-160.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (br s, 2H), 8.22 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 3.94-3.98 (m, 2H), 2.55 (s, 3H), 1.65-1.68 (m, 2H), 1.38-1.40 (m, 2H), 0.97 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 160.4, 159.5, 150.1, 148.5, 135.5, 128.7, 124.7, 115.4, 41.8, 30.2, 20.2, 14.6, 13.8; IR v_{max} (cm⁻¹)

3471, 3416, 1730, 1695; ESIMS m/z 319 [M+H⁺]; HRMS (ESI) for C₁₆H₁₉N₂O₃S [M+H]⁺ calcd: 319.1116, found: 319.1108.

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.4$; 72% isolated yield; M.p. 166.4-167.1 °C;¹H NMR (400 MHz, CDCl₃) δ 8.53 (br s, 1H), 8.38 (d, J = 9.0 Hz, 2H), 8.33 (br s, 1H), 6.99 (d, J = 9.0 Hz, 2H), 3.96 (t, J = 7.5 Hz, 2H), 3.92 (s, 3H), 1.63-1.66 (m, 2H), 1.37-1.42 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 164.8, 163.9, 161.6, 160.9, 160.8, 160.0, 159.1, 150.4, 150.3, 138.7, 138.5, 125.7, 125.6, 114.34, 114.30, 114.14, 114.07, 55.9, 41.9, 41.3, 30.3, 20.4, 20.3, 15.0, 14.0; IR v_{max} (cm⁻¹) 3464, 1741, 1689; ESIMS m/z 303 [M+H⁺]; HRMS (ESI) for C₁₆H₁₉N₂O₄ [M+H]⁺ calcd: 303.1345, found: 303.1357.

E/Z mixture

Yellow solid, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.4$; 78% isolated yield; M.p. 149.2-149.6 °C;¹H NMR (500 MHz, CDCl₃) & 8.57 (s, 1H), 7.94 (br s, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.11 (d, J = 7.5 Hz, 1H), 3.96 (t, J = 7.5 Hz, 2H), 3.87 (s, 3H), 1.62-1.68 (m, 2H), 1.36-1.42 (m, 2H), 0.96 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 162.8, 160.9, 160.7, 160.3, 159.5, 150.5, 150.4, 133.8, 129.5, 128.1, 127.2, 120.9, 120.0, 118.2, 117.9, 117.6, 117.4, 55.70, 55.68, 42.0, 41.4, 30.3, 20.33, 20.31, 14.0; IR v_{max} (cm⁻¹) 3419, 1737, 1698; ESIMS m/z 303 [M+H⁺]; HRMS (ESI) for $C_{16}H_{19}N_2O_4 [M+H]^+$ calcd: 303.1345, found: 303.1359.

Yellow solid, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.4$; 25% isolated yield; M.p. 163.6-167.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.90 (s, 1H), 8.16 (br s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 8.5 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 7.5 Hz, 1H), 7.51 (d, {J = 7.5} 8.5 Hz, 1H), 3.88-3.91 (m, 5H), 1.59-1.63 (m, 2H), 1.34-1.40 (m, 2H), 0.93 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 160.9, 160.0, 155.5, 150.3, 135.2, 133.0, 122.1, 120.1, 117.2, 110.7, 56.02, 56.01, 45.0, 41.4, 30.3, 20.4, 14.0; IR v_{max} (cm⁻¹) 3449, 1698, 1668; ESIMS m/z 303 [M+H⁺]; HRMS (ESI) for C₁₆H₁₉N₂O₄ [M+H]⁺ calcd: 303.1345, found: 303.1337.

E / Z mixture

Yellow crystal, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.5$; 58% isolated yield; M.p. 168.8-170.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 8.36 (d, J =8.5 Hz, 2H), 7.97 (br s, 1H), 7.36-7.42 (m, 5H), 7.05 (d, J = 9.0 Hz, 2H), 5.18 (s, 2H), 3.95 (t, J = 7.5 Hz, 2H), 1.63-1.67 (m, 2H), 1.36-1.43 (m, 2H), 0.96 (t, J = 7.0 Hz, 3H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 164.00, 163.96, 163.9, 163.2, 161.6, 161.0, 159.9, 159.1, 150.5, 150.4, 138.7, 138.6, 136.0, 129.97, 128.96, 128.6, 127.8, 127.7, 125.9, 125.8, 115.14, 115.12, 114.23, 114.18, 70.6, 45.0, 41.9, 41.4, 30.34, 30.33, 20.39, 20.35, 14.01, 13.99; IR v_{max} (cm⁻¹) 3449, 1731, 1697, 1653; ESIMS m/z 379 [M+H⁺]; HRMS (ESI) for C₂₂H₂₃N₂O₄ [M+H]⁺ calcd: 379.1658, found: 379.1667.

E/Z mixture

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.6$; 80% isolated yield; M.p. 149.8-152.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 8.38 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.5 Hz, 2H), 4.07 (t, J = 6.0 Hz, 2H), 3.96 (t, J = 7.5 Hz, 2H), 1.79-1.84 (m, 2H), 1.61-1.67 (m, 2H), 1.46-1.48 (m, 2H), 1.34-1.41 (m, 6H), 0.97 (t, J = 7.5 Hz, 3H), 0.90-0.93 (m, 3H); 13 C NMR (100 MHz, CDCl₃) δ 164.6, 164.0, 160.0, 138.9, 125.5, 114.8, 113.8, 68.7, 41.87, 41.86, 41.85, 31.7, 30.3, 29.2, 25.8, 22.8, 20.3, 14.2, 14.0; IR v_{max} (cm⁻¹) 3464, 1697, 1649; ESIMS m/z 373 [M+H⁺]; HRMS (ESI) for C₂₁H₂₉N₂O₄ [M+H]⁺

Yellow solid, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.6$; 42% isolated yield; M.p. 169.0-170.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.46-9.60 (br d, 1H), 8.49 (d, J = 9.0 Hz, 1H), 7.82 (s, 1H), 7.74 (s, 1H), 3.94-4.01 (m, 11H), 1.62-1.67 (m, 2H), 1.37-1.42 (m, 2H), 0.94-0.99 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 163.3, 161.30, 161.29, 160.33, 159.26, 152.59, 152.55, 150.3, 144.1, 144.0, 127.5, 127.4, 115.5, 115.4, 113.7, 113.5, 61.3, 56.6, 56.5, 42.0, 41.2, 30.30, 30.26, 20.3, 14.0; IR v_{max} (cm⁻¹) 3422, 1736, 1697, 1655; ESIMS *m*/*z* 363 [M+H⁺]; HRMS (ESI) for C₁₈H₂₃N₂O₆ [M+H]⁺ calcd: 363.1556, found: 363.1557.

E/Z mixture

Yellow solid, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.4$; 69% isolated yield; M.p. 155.7-158.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.32-8.35 (m, 2H), 6.76 (d, J = 9.0 Hz, 1H), 4.02 (s, 3H), 3.96 (s, 3H), 3.89-3.93 (m, 2H), 3.86 (s, 3H), 1.58-1.66 (m, 2H), 1.33-1.42 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 161.3, 159.2, 156.3, 154.2, 150.4, 141.2, 130.0, 120.0, 115.0, 106.4, 62.2, 60.9, 56.2, 41.1, 30.1, 20.2, 13.8; IR v_{max} (cm⁻¹) 3465, 1745, 1697, 1655; ESIMS *m/z* 363 [M+H⁺]; HRMS (ESI) for C₁₈H₂₀N₄O₃Na [M+Na]⁺ calcd: 363.1433, found: 363.1469.

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.7$; 24%

isolated yield; M.p. 149.1-149.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.79 (br s, 1H), 8.60 (s, 1H), 8.20 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 3.98 (t, J = 7.5 Hz, 2H), 2.97-3.04 (m, 1H), 1.63-1.71 (m, 2H), 1.41-1.46 (m, 2H), 1.30 (d, J = 7.5 Hz, 6H), 0.99 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 160.4, 160.2, 156.0, 150.1, 135.2, 130.2, 126.7, 116.0, 41.8, 34.5, 30.1, 23.5, 20.1, 13.8; IR ν_{max} (cm⁻¹) 3416, 1735, 1698, 1653; ESIMS *m/z* 315 [M+H⁺].

E / Z mixture

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) R_f = 0.7; 52% isolated yield; M.p. 156.3-160.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.60 (br d, 1H), 8.58 (s, 1H), 8.13-8.22 (m, 2H), 7.48-7.51 (m, 2H), 3.92-3.98 (m, 2H), 1.62-1.67 (m, 2H), 1.30-1.42 (m, 11H), 0.94-0.98 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 163.2, 161.2, 160.8, 160.3, 159.6, 158.3, 158.1, 150.7, 150.5, 135.1, 134.9, 130.0, 129.9, 125.7, 125.7, 116.3, 41.9, 41.3, 35.6, 31.2, 30.3, 20.3, 20.3, 13.97, 13.96; IR v_{max} (cm⁻¹) 3464, 1730, 1698, 1653; ESIMS *m/z* 329 [M+H⁺], HRMS (ESI) for C₁₉H₂₅N₂O₃ [M+H]⁺ calcd: 329.1865, found: 329.1869.

Transparent crystal, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.6$; 40% isolated yield; M.p. 155.5-156.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 8.13 (d, J = 8.0 Hz, 2H), 7.46-7.56 (m, 3H), 3.96 (t, J = 7.5 Hz, 2H), 1.62-1.68 (m, 2H), 1.36-1.44 (m, 2H), 0.97 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 160.5, 160.0, 159.8, 150.1, 134.3, 134.0, 133.7, 133.5, 132.6, 128.6, 128.6, 117.4, 45.01, 45.00, 42.1, 30.3, 20.4, 20.3, 14.0; IR v_{max} (cm⁻¹) 3436, 1731, 1701, 1655; ESIMS *m/z* 273 [M+H⁺].

E / *Z* mixture

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.6$; 85% isolated yield; M.p. 199.0-202.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.25 (s, 1H), 8.25 (br s, 1H), 8.01 (d, J = 8.5 Hz, 2H), 7.88-7.93 (m, 2H), 7.54-7.58 (m, 3H), 3.84-3.88 (m, 2H), 1.54-1.62 (m, 2H), 1.30-1.36 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 161.4, 160.4, 159.3, 158.4, 157.8, 149.8, 133.4, 133.1, 132.9, 132.0, 131.8, 130.4, 130.1, 130.0, 129.9, 127.73, 127.69, 126.7, 125.0, 124.9, 124.23, 124.16, 119.4, 119.3, 45.0, 42.0, 41.5, 30.3, 30.2, 20.4, 20.3, 13.94, 13.89; IR ν_{max} (cm⁻¹) 3415, 1737, 1699, 1666; ESIMS *m/z* 323[M+H⁺]; HRMS (ESI) for C₁₄H₁₈N₄O₅Na [M+Na]⁺ calcd: 345.1175, found: 345.1162.

E / Z mixture

Transparent crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.6$; 80% isolated yield; M.p. 187.4-194.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H), 8.24 (br s, 1H), 8.10 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 3.96 (t, J = 7.5 Hz, 2H), 1.63-1.68 (m, 2H), 1.36-1.43 (m, 2H), 0.97 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 160.9, 160.1, 158.7, 150.0, 140.1, 135.7, 135.5, 131.0, 129.99, 128.96, 117.6, 45.0, 42.10 30.3, 20.3, 14.0; IR v_{max} (cm⁻¹) 3416, 1730, 1697, 1655; ESIMS *m*/*z* 307 [M+H⁺]; HRMS (ESI) for C₁₅H₁₆N₂O₃Cl [M+H]⁺ calcd: 307.0849, found: 307.0861.

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) R_f = 0.6; 32% isolated yield; M.p. 188.1-188.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.26 (br s, 1H), 8.00 (d, *J* = 8.5 Hz, 2H), 7.61 (d, *J* = 8.5 Hz, 2H), 3.96 (t, *J* = 7.5 Hz, 2H), 1.63-1.68 (m, 2H), 1.36-1.43 (m, 2H), 0.97 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 160.9,

160.2, 158.8, 158.1, 150.2, 135.6, 135.4, 132.0, 131.9, 131.38, 131.36, 128.9, 128.7, 117.81, 117.78, 45.0, 42.1, 41.5, 30.3, 20.34, 20.31, 14.0; IR v_{max} (cm⁻¹) 3449, 1728, 1697, 1659; ESIMS *m/z* 351 [M+H⁺]; HRMS (ESI) for C₁₅H₁₆N₂O₃Br [M+H]⁺ calcd: 351.0344, found: 351.0337.

E / Z mixture

Yellow solid, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.5$; 85% isolated yield; M.p. 223.5-225.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 8.01 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 3.97 (t, J = 7.5 Hz, 2H), 1.60-1.68 (m, 2H), 1.34-1.44 (m, 2H), 0.97 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 161.0, 160.3, 159.3, 157.0, 156.3, 149.6, 149.5, 136.9, 136.8, 132.9, 132.6, 132.99, 131.97, 120.2, 118.3, 115.5, 115.4, 45.0, 42.2, 30.23, 30.20, 20.31, 20.29, 13.93, 13.92; IR v_{max} (cm⁻¹) 3417, 2235, 1727, 1698, 1655; ESIMS *m*/*z* 298 [M+H⁺]; HRMS (ESI) for C₁₆H₁₆N₃O₃ [M+H]⁺ calcd: 298.1192, found: 298.1198.

Yellow oil, analytical TLC (silica gel 60) (30% ethyl acetate in *n*-hexane) $R_f = 0.6$; 55% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (br s, 1H), 7.18-7.28 (m, 4H), 5.96-5.99 (m, 1H), 5.91-5.92 (m, 1H), 5.00 (d, J = 4.0 Hz, 1H), 4.15-4.18 (m, 1H), 3.68-3.80 (m, 2H), 2.48 (s, 3H), 2.28 (s, 3H), 1.42-1.46 (m, 2H), 1.25-1.30 (m, 2H), 0.89-0.949 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.6, 167.1, 166.9, 152.1, 152.0, 150.4, 150.4, 150.1, 138.9, 133.6, 133.5, 129.6, 126.6, 126.6, 109.9, 109.8, 106.7, 53.5, 53.4, 47.8, 41.50, 41.47, 31.8, 30.01, 29.97, 22.9, 20.2, 20.1, 15.8, 14.3, 13.9, 13.8, 13.7; IR ν_{max} (cm⁻¹) 3461, 1717, 1684; ESIMS m/z 401[M+H⁺].

Yellow oil, analytical TLC (silica gel 60) (30% ethyl acetate in *n*-hexane) $R_f = 0.6$; 52% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (br s, 1H), 7.23-7.26 (m, 2H), 6.82-6.85 (m, 2H), 5.95 (d, J = 9.0 Hz, 1H), 5.89-5.90 (m, 1H), 4.97 (d, J = 4.0 Hz, 1H), 4.16 (dd, J = 4.0, 7.0 Hz, 1H), 3.79 (s, 3H), 3.64-3.75 (m, 2H), 2.27 (s, 3H), 1.35-1.48 (m, 2H), 1.17-1.29 (m, 2H), 0.86-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.6, 167.3, 166.9, 159.6, 151.93, 151.91, 150.9, 150.8, 150.1, 130.3, 128.5, 114.2, 114.2, 109.8, 109.7, 106.67, 106.65, 55.4, 53.7, 53.7, 47.9, 47.8, 41.5, 41.4, 30.01, 29.96, 20.2, 20.1, 13.9, 13.8, 13.7; IR ν_{max} (cm⁻¹) 3436, 1719, 1690; ESIMS *m/z* 385 [M+H⁺].

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.4$; 78% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (br s, 1H), 7.19-7.26 (m, 1H), 6.82-6.91 (m, 3H), 6.00 (dd, J = 3.5, 15.5 Hz, 1H), 5.89 (dd, J = 3.0, 7.5 Hz, 1H), 4.98 (m, 1H), 4.17 (dd, J = 4.5, 10.5 Hz, 1H), 3.63-3.76 (m, 5H), 2.26 (s, 3H), 1.37-1.44 (m, 2H), 1.20-1.27 (m, 2H), 0.86-0.91 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.84, 167.83, 167.66, 167.57, 152.1, 152.0, 150.50, 150.45, 150.4, 150.3, 136.8, 136.7, 129.1, 128.9, 128.8, 128.42, 128.39, 110.0, 109.9, 106.7, 53.6, 53.5, 48.41, 48.39, 48.38, 41.48, 41.45, 29.99, 29.95, 20.2, 20.1, 13.9, 13.81, 13.75; IR ν_{max} (cm⁻¹) 3421, 1718, 1686; ESIMS m/z 385 [M+H⁺].

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.4$; 25% isolated yield; ¹H NMR (500 MHz, CDCl₃) δ 8.32 (br d, 1H), 7.24-7.29 (m, 1H), 7.08 (dd, J =

7.5, 19.0 Hz, 1H), 6.87-6.92 (m, 2H), 6.07 (dd, J = 2.5, 34.5 Hz, 1H), 5.91 (br s, 1H), 5.38, (t, J = 5.0 Hz, 1H), 4.26 (dd, J = 4.5, 16.5 Hz, 1H), 3.88 (d, J = 4.5 Hz, 3H), 3.77 (t, J = 9.5 Hz, 1H), 3.60-3.75 (m, 1H), 2.24 (s, 3H), 1.50-1.54 (m, 1H), 1.17-1.32 (m, 4H), 0.85-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 167.9, 167.6, 167.3, 156.40, 156.37, 152.22, 152.17, 150.73, 150.66, 150.5, 150.3, 130.29, 130.27, 129.1, 129.0, 126.9, 126.7, 120.67, 120.65, 110.3, 110.2, 110.0, 106.8, 106.7, 60.7, 55.64, 55.62, 55.52, 55.51, 51.6, 51.4, 45.0, 42.1, 41.7, 41.4, 41.3, 30.1, 30.0, 21.3, 20.3, 20.1, 14.4, 14.0, 13.9, 13.8, 13.7; IR ν_{max} (cm⁻¹) 3434, 1720, 1687; ESIMS m/z 385 [M+H⁺].

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.3$; 30% isolated yield; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (br s, 1H), 7.32-7.42 (m, 5H), 7.24 (t, J = 9.5 Hz, 2H), 6.89-6.92 (m, 2H), 5.95 (dd, J = 2.5, 10.0 Hz, 1H), 5.89-5.90 (m, 1H), 5.03 (s, 2H), 4.96 (d, J = 3.5 Hz, 1H), 4.14 (dd, J = 5.0, 9.0 Hz, 1H), 3.67-3.75 (m, 2H), 2.26 (s, 3H), 1.18-1.45 (m, 4H), 0.87-0.91 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.6, 167.3, 166.9, 158.9, 152.0, 152.0, 150.83, 150.81, 150.10, 150.08, 137.0, 130.3, 128.9, 128.84, 128.83, 128.3., 127.74, 127.73, 115.12, 115.09, 109.8, 109.7, 106.7, 70.2, 53.72, 53.69, 47.91, 47.85, 45.01, 45.00, 41.50, 41.48, 41.47, 30.03, 29.97, 20.22, 20.16, 13.94, 13.93, 13.83, 13.78; IR ν_{max} (cm⁻¹) 3448, 1719, 1686; ESIMS *m*/*z* 461 [M+H⁺]; HRMS (ESI) for C₂₇H₂₈N₂O₅Na [M+Na]⁺ calcd: 483.1896, found: 483.1881.

Yellow oil, analytical TLC (silica gel 60) (10% ethyl acetate in *n*-hexane) $R_f = 0.6$; 16% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.23 (t, J = 8.5 Hz 2H), 6.82-6.86 (m, 2H), 5.90-5.99 (m, 2H), 4.97 (d, J = 3.5 Hz, 1H), 4.18 (dd, J = 3.5, 7.0 Hz, 1H), 3.94 (t, J = 6.5 Hz, 2H), 3.65-3.79 (m, 2H), 2.29 (s, 3H), 1.75-1.82 (m, 2H), 1.19-1.49 (m, 10H), 0.89-0.94 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.6, 167.3, 166.8, 159.2, 151.89, 151.86, 151.82, 150.94, 150.88, 150.00, 149.96, 149.92, 130.2, 130.05, 129.99,

129.97, 128.2, 114.8, 114.7, 114.6, 109.72, 109.66, 109.57, 106.6, 68.2, 53.74, 53.70, 48.98, 47.88, 47.85, 41.46, 41.42, 41.38, 31.8, 30.0, 30.0, 29.9, 25.9, 22.8, 20.2, 20.1, 14.2, 13.86, 13.80, 13.76, 13.72, 13.66; IR v_{max} (cm⁻¹) 3416, 1719, 1686; ESIMS *m*/*z* 455 [M+H⁺].

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.4$; 65% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.28-8.3 (br d, 1H), 6.60 (d, J = 3.5 Hz, 2H), 5.98-6.02 (m, 1H), 5.90-2.92 (m, 1H), 4.96 (d, J = 7.0 Hz, 1H), 4.19 (d, J = 3.5 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 6H), 3.62-3.77 (m, 2H), 2.27 (s, 3H), 1.34-1.50 (m, 2H), 1.18-1.32 (m, 2H), 0.87-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.7, 167.1, 166.8, 153.38, 153.35, 152.0, 151.9, 150.69, 150.66, 150.0, 149.9, 138.2, 138.1, 132.4, 132.1, 109.83, 109.75, 106.8, 106.7, 106.6, 106.5, 61.0, 56.37, 56.35, 53.5, 48.6, 48.3, 41.5, 41.4, 30.1, 20.2, 20.1, 13.84, 13.76, 13.7; IR ν_{max} (cm⁻¹) 3424, 1719, 1686; ESIMS *m/z* 445 [M+H⁺].

Yellow oil, analytical TLC (silica gel 60) (30% ethyl acetate in *n*-hexane) $R_f = 0.5$; 47% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.66-8.70 (br d, 1H), 6.81-6.91 (m, 1H), 6.57-6.62 (m, 1H), 6.04 (d, J = 25.6 Hz, 1H), 5.89 (br s, 1H), 5.29 (br s, 1H), 4.13-4.16 (m, 1H), 3.95 (s, 3H), 3.82-3.83 (m, 6H), 3.61-3.78 (m, 2H), 2.24 (s, 3H), 1.52-1.54 (m, 1H), 1.20-1.37 (m, 3H), 0.86-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 167.8, 167.7, 167.5, 153.51, 153.50, 152.00, 151.97, 151.4, 150.9, 150.73, 150.68, 150.6, 141.9, 124.5, 124.4, 123.9, 123.7, 109.7, 107.0, 107.0, 106.7, 106.6, 61.3, 61.2, 60.9, 56.1, 56.0, 52.70, 52.66, 41.9, 41.5, 41.4, 41.3, 30.1, 30.0, 20.2, 20.1, 13.89, 13.87, 13.8, 13.7; IR ν_{max} (cm⁻¹) 3421, 1719, 1686; ESIMS m/z 445 [M+H⁺]; HRMS (ESI) for C₂₃H₂₈N₂O₇Na [M+Na]⁺ calcd: 467.1794, found: 467.1780.

Yellow oil, analytical TLC (silica gel 60) (30% ethyl acetate in *n*-hexane) $R_f = 0.6$; 66% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (br s, 1H), 7.15-7.26 (m, 4H), 5.98 (dd, J = 3.0, 10.5 Hz, 1H), 5.89-5.90 (m, 1H), 4.98 (br s, 1H), 4.17 (dd, J = 3.5, 7.0 Hz, 1H), 3.61-3.76 m, 2H), 2.83-2.93 (m, 1H), 2.26 (s, 3H), 1.30-1.46 (m, 2H), 1.15-1.23 (m, 8H), 0.86-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.7, 167.3, 166.9, 152.0, 151.9, 150.72, 150.67, 150.1, 149.1, 149.0, 133.94, 133.93, 133.8, 129.0, 129.0, 126.9, 126.8, 109.9, 109.8, 106.68, 106.65, 53.64, 53.61, 48.3, 48.2, 41.5, 41.4, 33.9, 29.9, 24.11, 24.08, 24.0, 20.2, 20.1, 13.9, 13.8, 13.7; IR ν_{max} (cm⁻¹) 3449, 1719, 1686; ESIMS *m/z* 397 [M+H⁺].

Brown oil, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.5$; 73% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (br d, 1H), 7.22-7.34 (m, 4H), 5.98 (dd, J = 3.0, 13.0 Hz, 1H), 5.88-5.90 (m, 1H), 4.98-5.00 (m, 1H), 4.16 (dd, J = 3.5, 7.0 Hz, 1H), 3.61-3.76 (m, 2H), 2.26 (s, 3H), 1.34-1.44 (m, 2H), 1.33 (s, 9H), 1.14-1.29 (m, 2H), 0.86-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.7, 167.5, 167.2, 151.94, 151.88, 151.33, 151.28, 150.73, 150.66, 150.2, 133.6, 133.5, 128.8, 128.7, 125.73, 125.69, 109.9, 109.8, 106.68, 106.65, 53.62, 53.59, 48.2, 48.0, 41.44, 41.36, 34.7, 31.5, 30.0, 20.2, 20.1, 13.9, 13.8, 13.7; IR ν_{max} (cm⁻¹) 3414, 1719, 1686; ESIMS m/z 410 [M+H⁺]; HRMS (ESI) for C₂₄H₃₀N₂O₄Na [M+Na]⁺ calcd: 433.2103, found: 433.2096.

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.5$; 79% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (br s, 1H), 7.31 (m, 5H), 5.98 (dd, J = 3.5, 15.5 Hz, 1H), 5.89-5.91 (m, 1H), 5.01 (d, J = 4.5 Hz, 1H), 4.17 (dd, J = 4.5, 10.5 Hz, 1H), 21

3.63-3.76 (m, 2H), 2.26 (s, 3H), 1.27-1.45 (m, 2H), 1.15-1.20 (m, 2H), 0.86-0.90 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.6, 167.3, 167.3, 159.84, 159.83, 152.1, 152.0, 150.41, 150.35, 138.22, 138.20, 129.84, 129.81, 121.4, 121.3, 115.2, 115.1, 113.64, 113.57, 110.0, 109.9, 106.73, 106.72, 55.4, 53.5, 53.4, 48.4, 48.3, 41.5, 41.4, 30.01, 29.98, 20.2, 20.1, 13.9, 13.8, 13.7; IR ν_{max} (cm⁻¹) 3414, 1719, 1685; ESIMS *m*/*z* 355 [M+H⁺].

Yellow oil, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.4$; 35% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.24 (m, 1H), 7.82-7.91 (m, 2H), 7.41-7.61 (m, 4H), 6.01 (dd, J = 3.0, 11.0 Hz, 1H), 5.92-5.94 (m, 2H), 4.17 (dd, J = 3.5, 15.0 Hz, 1H), 3.72-3.87 (m, 1H), 3.66 (t, J = 7.5 Hz, 1H), 2.27 (s, 3H), 1.44-1.51 (m, 1H), 1.13-1.31 (m, 3H), 0.80-0.94 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 167.8, 167.2, 166.6, 152.23, 152.17, 150.3, 150.2, 150.1, 134.12, 134.10, 133.7, 133.6, 130.92, 130.85, 129.62, 129.58, 128.9, 127.8, 127.7, 127.2, 127.1, 125.94, 125.92, 125.4, 122.3, 122.2, 110.24, 110.18, 107.0, 52.4, 52.3, 43.9, 43.2, 41.6, 41.4, 30.0, 29.9, 20.2, 20.1, 13.9, 13.83, 13.80, 13.7; IR ν_{max} (cm⁻¹) 3448, 1716, 1686; ESIMS m/z 404 [M+H⁺]; HRMS (ESI) for C₂₄H₂₄N₂O₄Na [M+Na]⁺ calcd: 427.1634, found: 427.1674.

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.5$; 95% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (br d, 1H), 7.28 (d, J = 7.0 Hz, 4H), 5.95 (dd, J = 3.5, 13.0 Hz, 1H), 5.89-5.91 (m, 1H), 5.02-5.03 (m, 1H), 4.11 (dd, J = 4.5, 8.0 Hz, 1H), 3.66-3.77 (m, 2H), 2.25 (s, 3H), 1.38-1.45 (m, 2H), 1.19-1.27 (m, 2H), 0.88-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 167.5, 167.3, 167.2, 152.3, 152.2, 150.3, 150.0, 150.0, 135.9, 135.7, 134.2, 134.2, 130.3, 130.6, 129.0, 129.0, 110.0, 109.9, 106.8, 53.3, 47.3, 47.24, 47.23, 45.0, 41.5, 30.03, 29.98, 20.2, 20.1, 13.9, 13.8, 13.70; IR v_{max} (cm⁻¹) 3448, 1717, 1686; ESIMS *m*/*z* 389 [M+H⁺]; HRMS (ESI) for C₂₀H₂₁N₂O₄ClNa [M+Na]⁺ calcd: 411.1088,

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.5$; 95% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (br d, 1H), 7.43-7.46 (m, 2H), 7.20-7.24 (m, 2H), 5.95 (dd, J = 3.5, 13.0 Hz, 1H), 5.90-5.93 (m, 1H), 5.01-5.02 (m, 1H), 4.11 (dd, J = 4.5, 7.0 Hz, 1H), 3.70-3.76 (m, 2H), 2.25 (s, 3H), 1.39-1.45 (m, 2H), 1.20-1.25 (m, 2H), 0.88-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.54, 167.47, 167.46, 167.08, 167.05, 167.00, 169.99, 152.3, 152.24, 150.18, 150.15, 150.13, 149.9, 149.8, 136.4, 136.3, 132.08, 132.05, 132.02, 131.98, 131.96, 130.99, 130.95, 130.90, 130.88, 122.39, 122.38, 110.1, 110.0, 106.86, 106.84, 106.81, 105.0, 53.2, 47.34, 47.28, 45.0, 41.6, 30.04, 29.98, 20.17, 20.15, 13.9, 13.8, 13.7; IR υ_{max} (cm⁻¹) 3447, 1717, 1685; ESIMS m/z 433 [M+H⁺]; HRMS (ESI) for C₂₀H₂₁N₂O₄BrNa [M+Na]⁺ calcd: 455.0582, found: 455.0575.

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.4$; 98% isolated yield; ¹H NMR (500 MHz, CDCl₃) δ 8.61 (br d, 1H), 7.62 (t, J = 8.0 Hz, 2H), 7.49 (t, J = 8.0 Hz, 2H), 5.99 (dd, J = 2.5, 11.0 Hz, 1H), 5.92 (br s, 1H), 5.15 (br s, 1H), 4.07 (t, J = 3.5 Hz, 1H), 3.71-3.80 (m, 2H), 2.24 (s, 3H), 1.41-1.48 (m, 2H), 1.24-1.27 (m, 2H), 0.89-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 167.04, 166.96, 166.6, 152.7, 150.1, 150.0, 148.81, 148.79, 143.6, 143.4, 132.50, 132.49, 130.1, 130.0, 129.9, 118.7, 111.97, 111.95, 110.5, 110.4, 106.97, 106.96, 106.94, 61.0, 53.07, 53.05, 53.03, 53.01, 47.24, 47.21, 47.0, 46.9, 41.7, 30.03, 29.97, 21.3, 20.2, 20.1, 14.4, 13.9, 13.74, 13.65; IR v_{max} (cm⁻¹) 3448, 2230, 1718, 1686; ESIMS m/z 380 [M+H⁺].

E/Z mixture

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.5$; 95% isolated yield; ¹H NMR (500 MHz, CDCl₃) δ 8.61-8.64 (br s, 1H), 8.53 (s, 1H), 8.39 (d, J = 8.5 Hz, 2H), 6.97 (d, J = 8.5 Hz, 2H), 4.07 (t, J = 6.5 Hz, 2H), 3.39 (s, 3H), 1.79-1.84 (m, 2H), 1.46-1.48 (m, 2H), 1.35-1.36 (m, 4H), 0.90-0.93 (m, 3H); 13 C NMR (100 MHz, CDCl₃) δ 164.7, 164.3, 161.86, 160.88, 160.2, 150.6, 138.9, 125.4, 114.8, 113.5, 68.8, 45.0, 31.7, 29.2, 28.6, 25.83, 22.79, 14.2; IR v_{max} (cm⁻¹) 3421, 1726, 1699, 1648; ESIMS m/z 331 [M+H⁺]; HRMS (ESI) for $C_{18}H_{23}N_2O_4 [M+H]^+$ calcd: 331.1658, found: 331.1642.

Yellow solid, analytical TLC (silica gel 60) (ethyl acetate) $R_f = 0.2$; 82% isolated yield; ¹H NMR (500 MHz, d^6 -DMSO) δ 8.25 (d, J = 14.0 Hz, 1H), 8.16-8.20 (t, J = 9.0 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 3.32 (s, 3H), 3.15 (d, J = 15 Hz, 3H), 2.56 (s, 3H);¹³C NMR (100 MHz, d^{6} -DMSO) δ 163.9 (162.9), 162.0 (161.4), 155.5 (154.9), 151.1 (151.0), 146.5 (146.4), 135.0, 129.1 (129.0), 124.81 (124.78), 117.8 (117.7), 28.2 (27.7), 14.30; IR v_{max} (cm⁻¹) 3421, 1717, 1689; ESIMS *m/z* 277 [M+H⁺].

E/Z mixture

Yellow crystal, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.5$; 41% isolated yield; M.p. 172.2-175.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 8.39 (d, J = 7.0 Hz, 2H), 8.67 (br s, 1H), 7.41 (t, J = 6.0 Hz, 1H), 7.27-7.29 (m, 2H), 7.07-7.09 (m, 2H), 6.91 (d, J = 7.0 Hz, 2H), 4.04 (t, J = 5.0 Hz, 2H), 2.49 (s, 3H), 1.77-1.82 (m, 2H), 1.43-1.46 (m, 2H), 1.33-1.34 (m, 4H), 0.88-0.92 (3H); 13 C NMR (100 MHz, CDCl₃) δ 165.0, 164.9, 164.2, 163.0, 161.9, 160.8, 160.7, 160.2, 150.0, 139.7, 139.6, 139.4, 139.0, 134.6, 134.3, 130.2, 130.1, 129.5, 129.41, 129.38, 129.2, 125.8, 125.7, 125.4, 125.3, 114.9, 114.8, 113.5, 113.4, 68.83, 68.80, 31.70, 31.68, 29.2, 29.1, 25.1, 25.78, 22.76, 22.7, 21.54, 21.52, 14.2; IR v_{max} (cm⁻¹) 3416, 1738, 1689, 1667; ESIMS *m*/*z* 407 [M+H⁺]; HRMS (ESI) for C₂₄H₂₇N₂O₄ [M+H]⁺ calcd: 407.1971, found: 407.1965.

Yellow solid, analytical TLC (silica gel 60) (ethyl acetate) $R_f = 0.2$; 53% isolated yield; M.p. 219.4-222.6 °C; ¹H NMR (500 MHz, d^6 -DMSO) δ 8.28 (d, J = 35.0 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.13 (d, J = 8.5 Hz, 1H), 7.30-7.38 (m, 3H), 7.22-7.24 (m, 1H), 7.11 (m, 2H), 2.55 (d, J = 19.0 Hz, 3H), 2.34, (s, 3H); ¹³C NMR (100 MHz, d^6 -DMSO) δ 163.9 (163.2), 161.9 (161.7), 155.5 (155.3), 150.74 (150.66), 146.61 (146.55), 138.64 (138.62), 136.0(135.7), 135.1 (135.0), 130.0 (129.9), 129.4 (129.3), 129.07 (129.04), 128.95, 126.7 (126.5), 124.83 (124.75), 118.2 (118.0), 21.27, 21.26, 14.31, 14.29; IR ν_{max} (cm⁻¹) 3448, 1731, 1697, 1675; ESIMS m/z 353 [M+H⁺]; HRMS (ESI) for C₁₉H₁₇N₂O₃S [M+H]⁺ calcd: 353.0960, found: 353.0970.

Brown oil, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.5$; 20% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (br s, 1H), 7.17-7.22 (m, 2H), 6.81-6.84 (m, 2H), 5.97 (dd, J = 2.8, 8.4 Hz, 1H), 5.90 (br s, 1H), 4.91-4.93 (m, 1H), 4.19 (dd, J = 3.6, 15.2 Hz, 1H), 3.93 (t, J = 6.4 Hz, 2H), 3.13 (s, 3H), 2.26 (d, J = 4.8 Hz, 3H), 1.73-1.80 (m, 2H), 1.45-1.47 (m, 2H), 1.33-1.35 (m, 4H), 0.89-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.6, 159.1, 159.0, 151.8, 150.6, 150.4, 150.1, 129.9, 129.8, 128.1, 127.6, 114.6, 109.6, 109.5, 106.5, 106.4, 68.0, 53.8, 53.6, 48.0, 47.9, 31.6, 29.2, 27.64, 27.56, 25.7, 22.6, 14.0, 13.1; IR v_{max} (cm⁻¹) 3415, 1719, 1690; ESIMS *m*/*z* 413 [M+H⁺]; HRMS (ESI) for C₂₃H₂₈N₂O₅Na [M+Na]⁺ calcd: 435.1896, found: 435.1911.

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.5$; 20% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (br s, 1H), 7.21-7.28 (m, 4H), 5.99 (dd, J = 3.0, 9.5 Hz, 1H), 5.92 (br s, 1H), 4.97-4.99 (m, 1H), 4.19 (dd, J = 3.5, 16.0 Hz, 1H), 3.16 (d, J = 3.5 Hz, 3H), 2.49 (s, 3H), 2.28 (d, J = 4.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 167.8, 167.1, 166.7, 152.2, 150.3, 150.19, 150.17, 150.1, 139.1, 138.9, 133.6, 1331, 129.5, 129.4, 126.62, 126.58, 110.0, 109.9, 106.74, 106.69, 53.7, 53.0, 48.0, 47.9, 45.0, 27.9, 27.9, 21.3, 15.8, 15.7, 14.4, 13.8; IR v_{max} (cm⁻¹) 3428, 1717, 1688; ESIMS *m/z* 359 [M+H⁺].

Brown oil, analytical TLC (silica gel 60) (25% ethyl acetate in *n*-hexane) $R_f = 0.3$; 46% isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (br d, 1H), 7.20-7.34 (m, 4H), 6.66-6.89 (m, 4H), 5.99 (dd, J = 3.0, 15.0 Hz, 1H), 5.92 (dd, J = 2.5, 9.0 Hz, 1H), 5.01 (dd, J = 3.5, 9.0 Hz, 1H), 4.32 (t, J = 3.0 Hz, 1H), 3.93-3.97 (m, 2H), 2.35 (s, 3H), 2.27-2.31 (d, J = 14.0 Hz, 3H), 1.74-1.82 (m, 2H), 1.46 (m, 2H), 1.33-1.35 (m, 4H), 0.89-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.7, 167.4, 166.9, 159.5, 159.4, 152.1, 152.1, 150.8, 150.7, 150.0, 139.6, 133.4, 130.4, 130.34, 130.29, 129.4, 129.0, 128.2, 128.0, 125.4, 114.91, 114.86, 110.0, 106.8, 106.7, 68.3, 54.2, 54.1, 48.6, 48.3, 31.8, 29.5, 29.4, 26.0, 25.9, 22.8, 21.5, 14.2, 13.9, 13.8; IR v_{max} (cm⁻¹) 3416, 1698; ESIMS *m*/*z* 488 [M+H⁺]; HRMS (ESI) for C₂₉H₃₂N₂O₅Na [M+Na]⁺ calcd: 511.2209, found: 511.2218.

Yellow oil, analytical TLC (silica gel 60) (50% ethyl acetate in *n*-hexane) $R_f = 0.6$; 75%

isolated yield; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (br d, 1H), 7.21-7.33 (m, 6H), 6.67-6.78 (m, 2H), 6.00 (dd, J = 3.0, 21.0 Hz, 1H), 5.92-5.94 (m, 1H), 5.03-5.04 (m, 1H), 4.29 (t, J = 4.0 Hz, 1H), 2.47 (s, 3H), 2.35 (s, 3H), 2.28 (d, J = 13.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.7, 152.31, 152.30, 150.31, 150.26, 149.9, 139.7, 139.2, 139.1, 133.5, 133.4, 130.3, 129.8, 129.7, 129.4, 129.99, 128.97, 126.70, 126.66, 125.4, 110.2, 106.9, 106.8, 60.7, 54.0, 53.9, 48.3, 48.2, 45.0, 21.5, 21.5, 21.3, 15.8, 15.7, 14.4, 13.9, 13.8; IR ν_{max} (cm⁻¹) 3420, 1755, 1701; ESIMS *m*/*z* 435 [M+H⁺]; HRMS (ESI) for C₂₄H₂₂N₂O₄SNa [M+Na]⁺ calcd: 457.1198, found: 457.1184.

¹H NMR Kinetics Study of Conjugate Addition of 5a^[1]

All reactions were conducted with 0.025 mmol of benzylidene barbiturate **5a**, 0.25 mmol of 2-methylfuran, 0.03 mmol of internal standard dichloromethane and 20 mol % HB-DAD organocatalysts. Stock solutions of **5a** (0.083 M; 0.05 mmol of **5a** in 0.6 mL of CDCl₃) and the HB-DAD organocatalysts (0.05 M; 0.01 mmol of HB-DAD organocatalysts in 0.2 mL of CDCl₃) were prepared in 2 mL vials. A NMR tube was charged with 0.3 mL of **5a** stock solution followed by 0.1 mL of HB-DAD organocatalysts stock solution and 1.98 μ L of CH₂Cl₂. The mixture was made up to 0.5 mL with CDCl₃. After adding 22.3 μ L of 2-methylfuran, the first NMR spectrum was taken 5 min after the addition. Additional NMR spectra were recorded every 5 min for a total of 120 min.

The methylene peak of CH_2Cl_2 (5.3, singlet, 2H) was monitored with the ratio of product signal (4.91, multiplet, 1H) that was calibrated as 1. The number of mole of product was calculated based on the known number of mole of internal standard CH_2Cl_2 in the reaction using:

A) Calculation of Concentration of Products

No. of mmol of product = [mmol of $CH_2Cl_2 \ge 2$ / Ratio of $CH_2Cl_2 \ge 2$

B) Plot of ln [Concentration of 5a]) vs time.

With a 10-fold excess of 2-methylfuran, all conjugate additions of **5a** were pseudo-first-order, and the corresponding rate constant k_{obs} were determined the slope of the plot of the ln (0.05 – [Concentration of product]) vs time.

C) Calculation of Relative Rate Constants (k_{rel}), k_{cat} and k_{uncata} **1a**-catalyzed reaction: $k_{obs(Ia)} = 0.00015466 \text{ s}^{-1}$ Uncatalyzed reaction: $k_{obs(background)} = k_{uncata} = 0.00003766 \text{ s}^{-1}$ $k_{cat} = k_{obs(Ia)} - k_{uncata}$ = 0.00015466-0.00003766 $= 0.00011700 \text{ s}^{-1}$ $k_{rel} = k_{cat} / k_{uncata}$ = 0.00011700 / 0.00003766 $= 3.12 \text{ at } 20 \text{ mol}\% \text{ of } \mathbf{1a}$

Catalysts	$k_{obs} \ge 10^{-4} (s^{-1})$	$k_{cat} \ge 10^{-4} (s^{-1})$	k _{rel}
	0.4288	$k_{uncata} = 0.4288$	1.0
	0.3244	$k_{uncata} = 0.3244$	1.0
1a	1.5466	1.17	3.10
1a	1.4221	1.0455	2.77
1b	1.0437	0.6671	1.77
1b	1.0548	0.6782	1.80
1c	0.3662	-0.0104	-0.027
2a	1.2174	0.8408	2.23
2a	1.2239	0.8473	2.25
2b	0.9275	0.5509	1.46
2b	0.8725	0.4959	1.33
3a	0.8178	0.4412	1.17

Table S6. Rate constants determinations with ¹H NMR studies

Reference of Kinetics Study:

[1] a) A. Wittkopp, P. R. Schreiner, *Chem. Eur. J.* 2003, 9, 407; b) P. N. H. Huynh, R. R. Walvoord, M. C. Kozlowski, *J. Am. Chem. Soc.* 2012, 134, 15621.
First Trial–[5a (0.025 mmol); 2-methylfuran(0.25 mmol); 1a (0.005 mmol); CDCl₃(0.5 mL)]

29

	-2.8						
	3) 1000	2000	3000 400	0 5000	6000 7000	8000
	-5						
	$\widehat{\Xi}^{-3.2}$				y = -0.0001546	6 x - 2.91679859	
	npo -3.4				R ² =	0.992	
	-[br				.		
	6.0						
	E -3.8						
	-4						
						•	
	-4.2			Time	e (s)		
Time (min)	Time (s)	Integration	mmol	NMR Yield (9	%) [product]	0.05-[product]	ln(0.05-[product])
5	300	137.608	0.00044	1.7	0.0009	0.0491	-3.013
10	600	56.381	0.00106	4.3	0.0021	0.0479	-3.039
15	900	33.776	0.00178	7.1	0.0036	0.0464	-3.069
20	1200	20.943	0.00286	11.5	0.0057	0.0443	-3.117
25	1500	16.149	0.00372	14.9	0.0074	0.0426	-3.157
30	1800	13.483	0.00445	17.8	0.0089	0.0411	-3.192
35	2100	11.359	0.00528	21.1	0.0106	0.0394	-3.233
40	2400	9.863	0.00608	24.3	0.0122	0.0378	-3.275
45	2700	8.819	0.00680	27.2	0.0136	0.0364	-3.313
50	3000	7.976	0.00752	30.1	0.0150	0.0350	-3.354
55	3300	7.220	0.00831	33.2	0.0166	0.0334	-3.400
60	3600	6.684	0.00898	35.9	0.0180	0.0320	-3.441
65	3900	6.173	0.00972	38.9	0.0194	0.0306	-3.488
70	4200	5.729	0.01047	41.9	0.0209	0.0291	-3.539
75	4500	5.381	0.01115	44.6	0.0223	0.0277	-3.586
80	4800	5.108	0.01175	47.0	0.0235	0.0265	-3.630
85	5100	4.842	0.01239	49.6	0.0248	0.0252	-3.680
90	5400	4.596	0.01306	52.2	0.0261	0.0239	-3.734
95	5700	4.351	0.01379	55.2	0.0276	0.0224	-3.798
100	6000	4.192	0.01431	57.3	0.0286	0.0214	-3.846
105	6300	4.016	0.01494	59.8	0.0299	0.0201	-3.906
110	6600	3.880	0.01546	61.9	0.0309	0.0191	-3.959
115	6900	3.723	0.01611	64.5	0.0322	0.0178	-4.030
120	7200	3.598	0.01668	66.7	0.0334	0.0166	-4.096

Second Trial–[**5a** (0.025 mmol); 2-methylfuran(0.25 mmol); **1a** (0.005 mmol); CDCl₃(0.5 mL)]

Time (min)	Time (s)	Integration	mmol	NMR Yield (%)	[product]	0.05-[product]	ln(0.05-[product])
5	300	137.608	0.00044	1.7	0.0009	0.0491	-3.013
10	600	56.381	0.00106	4.3	0.0021	0.0479	-3.039
15	900	33.776	0.00178	7.1	0.0036	0.0464	-3.069
20	1200	24.711	0.00243	9.7	0.0049	0.0451	-3.098
25	1500	18.949	0.00317	12.7	0.0063	0.0437	-3.131
30	1800	15.761	0.00381	15.2	0.0076	0.0424	-3.161
35	2100	12.889	0.00466	18.6	0.0093	0.0407	-3.202
40	2400	11.096	0.00541	21.6	0.0108	0.0392	-3.239
45	2700	9.441	0.00636	25.4	0.0127	0.0373	-3.289
50	3000	8.466	0.00709	28.3	0.0142	0.0358	-3.329
55	3300	7.653	0.00784	31.4	0.0157	0.0343	-3.372
60	3600	6.856	0.00875	35.0	0.0175	0.0325	-3.427
65	3900	6.750	0.00889	35.6	0.0178	0.0322	-3.435
70	4200	6.056	0.00991	39.6	0.0198	0.0302	-3.500
75	4500	5.958	0.01007	40.3	0.0201	0.0299	-3.511
80	4800	5.587	0.01074	43.0	0.0215	0.0285	-3.557
85	5100	5.235	0.01146	45.8	0.0229	0.0271	-3.609
90	5400	5.002	0.01200	48.0	0.0240	0.0260	-3.649
95	5700	4.641	0.01293	51.7	0.0259	0.0241	-3.724
100	6000	4.436	0.01352	54.1	0.0270	0.0230	-3.774
105	6300	4.222	0.01421	56.8	0.0284	0.0216	-3.836
110	6600	4.165	0.01441	57.6	0.0288	0.0212	-3.854
115	6900	3.919	0.01531	61.2	0.0306	0.0194	-3.944
120	7200	3.734	0.01607	64.3	0.0321	0.0179	-4.025

First Trial–[5a (0.025 mmol); 2-methylfuran(0.25 mmol); 2a (0.005 mmol); CDCl₃(0.5 mL)]

)	J						
	-2.8	0 100	00 2000	3000	4000 5000	6000 7000	8000
	-3						
			· · · · ·	~	y = -0.000122 R ²	239 x - 2.89872170 = 0.982	
	opduct						
	J -3.4				··· · · ·		
	0.05						
	__ -5.0						
	-3.8					• • •	
	-4						
		T .	1 1		$\frac{\text{me}(s)}{(1-s)^2}$		
Time (min)	l'ime (s)		mmol r	MR Yield (9	6) [product] 0	.05-[product]	In(0.05-[product])
5	300	242.841	0.00025	1.0	0.0005	0.0495	-3.006
10	600	92.072	0.00065	2.6	0.0013	0.0487	-3.022
15	900	44.052	0.00136	5.4	0.0027	0.0473	-3.052
20	1200	31.731	0.00189	7.6	0.0038	0.0462	-3.074
25	1500	25.261	0.00238	9.5	0.0048	0.0452	-3.096
30	1800	20.107	0.00298	11.9	0.0060	0.0440	-3.123
35	2100	16.723	0.00359	14.4	0.0072	0.0428	-3.151
40	2400	13.651	0.00440	17.6	0.0088	0.0412	-3.189
45	2700	12.061	0.00497	19.9	0.0099	0.0401	-3.218
50	3000	10.807	0.00555	22.2	0.0111	0.0389	-3.247
55	3300	9.668	0.00621	24.8	0.0124	0.0376	-3.281
60	3600	8.956	0.00670	26.8	0.0134	0.0366	-3.308
65	3900	8.065	0.00744	29.8	0.0149	0.0351	-3.349
70	4200	7.628	0.00787	31.5	0.0157	0.0343	-3.374
75	4500	7.001	0.00857	34.3	0.0171	0.0329	-3.416
80	4800	6.576	0.00912	36.5	0.0182	0.0318	-3.450
85	5100	6.231	0.00963	38.5	0.0193	0.0307	-3.482
90	5400	5.922	0.01013	40.5	0.0203	0.0297	-3.515
95	5700	5.353	0.01121	44.8	0.0224	0.0276	-3.591
100	6000	5.100	0.01176	47.1	0.0235	0.0265	-3.632
105	6300	4.834	0.01241	49.7	0.0248	0.0252	-3.682
110	6600	4.466	0.01343	53.7	0.0269	0.0231	-3.767
115	6900	4.338	0.01383	55.3	0.0277	0.0223	-3.802
120	7200	4.237	0.01416	56.6	0.0283	0.0217	-3.832

Second Trial–[**5a** (0.025 mmol); 2-methylfuran(0.25 mmol); **2a** (0.005 mmol); CDCl₃(0.5 mL)]

First Trial–[**5a** (0.025 mmol); 2-methylfuran(0.25 mmol); **1b** (0.005 mmol); CDCl₃(0.5 mL)]

Time (min)	Time (s)	Integration	mmol	NMR Yield (%)	[product]	0.05-[product]	ln(0.05-[product])
5	300	154.393	0.00039	1.6	0.0008	0.0492	-3.011
10	600	62.603	0.00096	3.8	0.0019	0.0481	-3.035
15	900	40.411	0.00148	5.9	0.0030	0.0470	-3.057
20	1200	28.940	0.00207	8.3	0.0041	0.0459	-3.082
25	1500	22.553	0.00266	10.6	0.0053	0.0447	-3.108
30	1800	18.152	0.00331	13.2	0.0066	0.0434	-3.138
35	2100	15.512	0.00387	15.5	0.0077	0.0423	-3.164
40	2400	13.650	0.00440	17.6	0.0088	0.0412	-3.189
45	2700	12.135	0.00494	19.8	0.0099	0.0401	-3.216
50	3000	10.870	0.00552	22.1	0.0110	0.0390	-3.245
55	3300	9.741	0.00616	24.6	0.0123	0.0377	-3.279
60	3600	9.035	0.00664	26.6	0.0133	0.0367	-3.304
65	3900	8.247	0.00728	29.1	0.0146	0.0354	-3.340
70	4200	7.678	0.00781	31.3	0.0156	0.0344	-3.371
76	4560	7.161	0.00838	33.5	0.0168	0.0332	-3.404
80	4800	6.798	0.00883	35.3	0.0177	0.0323	-3.431
85	5100	6.352	0.00945	37.8	0.0189	0.0311	-3.470
90	5400	5.961	0.01006	40.3	0.0201	0.0299	-3.511
95	5700	5.698	0.01053	42.1	0.0211	0.0289	-3.543
100	6000	5.405	0.01110	44.4	0.0222	0.0278	-3.583
105	6300	5.204	0.01153	46.1	0.0231	0.0269	-3.614
110	6600	4.980	0.01205	48.2	0.0241	0.0259	-3.653
115	6900	4.795	0.01251	50.1	0.0250	0.0250	-3.690
120	7200	4.604	0.01303	52.1	0.0261	0.0239	-3.732

	-2.80	0 (
	-2.90	D 0 10	200 200	0 3000 4000) 5000	6000 7000	8000
	-3.00				0.0001		
	1 .10	о •	The second secon		y = -0.0001	0548 x - 2.94288271 $R^2 = 0.995$	
	po -3.20	D	~				
	1 -3.30	C					
	00- 3.40	D					
	-3.50	C					
	-3.60	0					
	-3.70	0				•	
	-3.80) '		Time	(s)		
Time(min)	Time(s) In	ntegration	mmol	NMR Yield (%)	[product]	0.05-[product]	ln(0.05-[product])
5	300	241.987	0.00025	1.0	0.0005	0.0495	-3.006
10	600	77.849	0.00077	3.1	0.0015	0.0485	-3.027
15	900	45.425	0.00132	5.3	0.0026	0.0474	-3.050
20	1200	31.206	0.00192	7.7	0.0038	0.0462	-3.076
25	1500	22.889	0.00262	10.5	0.0052	0.0448	-3.107
30	1800	18.958	0.00316	12.7	0.0063	0.0437	-3.131
35	2100	16.114	0.00372	14.9	0.0074	0.0426	-3.157
40	2400	13.918	0.00431	17.2	0.0086	0.0414	-3.185
45	2700	12.299	0.00488	19.5	0.0098	0.0402	-3.213
50	3000	10.812	0.00555	22.2	0.0111	0.0389	-3.247
55	3300	9.446	0.00635	25.4	0.0127	0.0373	-3.289
60	3600	9.011	0.00666	26.6	0.0133	0.0367	-3.305
65	3900	8.436	0.00711	28.4	0.0142	0.0358	-3.330
70	4200	7.646	0.00785	31.4	0.0157	0.0343	-3.372
76	4560	7.190	0.00835	33.4	0.0167	0.0333	-3.402
80	4800	6.772	0.00886	35.4	0.0177	0.0323	-3.433
85	5100	6.357	0.00944	37.8	0.0189	0.0311	-3.470
90	5400	5.923	0.01013	40.5	0.0203	0.0297	-3.515
95	5700	5.704	0.01052	42.1	0.0210	0.0290	-3.542
100	6000	5.399	0.01111	44.5	0.0222	0.0278	-3.584
105	6300	5.211	0.01151	46.1	0.0230	0.0270	-3.613
110	6600	4.982	0.01204	48.2	0.0241	0.0259	-3.653
115	6900	4.801	0.01250	50.0	0.0250	0.0250	-3.689
120	7200	4.598	0.01305	52.2	0.0261	0.0239	-3.734

Second Trial–[**5a** (0.025 mmol); 2-methylfuran(0.25 mmol); **1b** (0.005 mmol); CDCl₃(0.5 mL)]

First Trial–[**5a** (0.025 mmol); 2-methylfuran(0.25 mmol); **2b** (0.005 mmol); CDCl₃(0.5 mL)]

Time (min)	Time (s)	Integration	mmol	NMR Yield (%)	[product]	0.05-[product]	ln(0.05-[product])	
5	300	195.361	0.00031	1.2	0.0006	0.0494	-3.008	
10	600	82.549	0.00073	2.9	0.0015	0.0485	-3.025	
15	900	52.693	0.00114	4.6	0.0023	0.0477	-3.042	
20	1200	37.759	0.00159	6.4	0.0032	0.0468	-3.061	
25	1500	26.193	0.00229	9.2	0.0046	0.0454	-3.092	
30	1800	21.500	0.00279	11.2	0.0056	0.0444	-3.114	
36	2160	18.286	0.00328	13.1	0.0066	0.0434	-3.136	
40	2400	15.552	0.00386	15.4	0.0077	0.0423	-3.163	
45	2700	13.757	0.00436	17.4	0.0087	0.0413	-3.187	
50	3000	11.985	0.00501	20.0	0.0100	0.0400	-3.219	
55	3300	10.512	0.00571	22.8	0.0114	0.0386	-3.255	
60	3600	9.361	0.00641	25.6	0.0128	0.0372	-3.292	
65	3900	8.445	0.00710	28.4	0.0142	0.0358	-3.330	
70	4200	7.996	0.00750	30.0	0.0150	0.0350	-3.353	
75	4500	7.329	0.00819	32.7	0.0164	0.0336	-3.392	
80	4800	6.819	0.00880	35.2	0.0176	0.0324	-3.430	
88	5280	6.557	0.00915	36.6	0.0183	0.0317	-3.452	
90	5400	6.309	0.00951	38.0	0.0190	0.0310	-3.474	
95	5700	6.003	0.00999	40.0	0.0200	0.0300	-3.506	
100	6000	5.822	0.01031	41.2	0.0206	0.0294	-3.527	
105	6300	5.702	0.01052	42.1	0.0210	0.0290	-3.542	
110	6600	5.520	0.01087	43.5	0.0217	0.0283	-3.566	
115	6900	5.419	0.01107	44.3	0.0221	0.0279	-3.581	
120	7200	5.332	0.01125	45.0	0.0225	0.0275	-3.594	
-2.8	1000	2000	3000	4000	5000	6000	7000	8000
-----------------	------	------	------	----------	------------	-----------	-------------------	------
-3	•				y = -0.0	$R^2 = 0$	x - 2.9687 998	1389
-3.1								
10]-5 .2								
•• -3.4					the second	_		
-3.5							•	
-3.6							~	
-3.7				Time (s)				

Second Trial–[**5a** (0.025 mmol); 2-methylfuran(0.25 mmol); **1a** (0.005 mmol); CDCl₃(0.5 mL)]

Time (min)	Time (s)	Integration	mmol	NMR Yield (%)	[product]	0.05-[product]	ln(0.05-[product])
5	300	194.663	0.00031	1.2	0.0006	0.0494	-3.008
10	600	65.329	0.00092	3.7	0.0018	0.0482	-3.033
15	900	40.720	0.00147	5.9	0.0029	0.0471	-3.056
20	1200	30.016	0.00200	8.0	0.0040	0.0460	-3.079
25	1500	23.477	0.00256	10.2	0.0051	0.0449	-3.104
30	1800	19.556	0.00307	12.3	0.0061	0.0439	-3.127
35	2100	16.861	0.00356	14.2	0.0071	0.0429	-3.149
40	2400	14.775	0.00406	16.2	0.0081	0.0419	-3.173
45	2700	13.278	0.00452	18.1	0.0090	0.0410	-3.195
50	3000	12.074	0.00497	19.9	0.0099	0.0401	-3.217
55	3300	10.657	0.00563	22.5	0.0113	0.0387	-3.251
60	3600	9.813	0.00611	24.5	0.0122	0.0378	-3.276
65	3900	9.213	0.00651	26.0	0.0130	0.0370	-3.298
70	4200	8.508	0.00705	28.2	0.0141	0.0359	-3.327
76	4560	7.943	0.00755	30.2	0.0151	0.0349	-3.356
80	4800	7.498	0.00800	32.0	0.0160	0.0340	-3.382
85	5100	7.114	0.00843	33.7	0.0169	0.0331	-3.407
90	5400	6.766	0.00887	35.5	0.0177	0.0323	-3.434
95	5700	6.375	0.00941	37.7	0.0188	0.0312	-3.468
100	6000	6.104	0.00983	39.3	0.0197	0.0303	-3.495
105	6300	5.877	0.01021	40.8	0.0204	0.0296	-3.521
110	6600	5.589	0.01073	42.9	0.0215	0.0285	-3.557
115	6900	5.416	0.01108	44.3	0.0222	0.0278	-3.581
120	7200	5.210	0.01152	46.1	0.0230	0.0270	-3.613

First Trial–Background–[5a (0.025 mmol); 2-methylfuran(0.25 mmol); CDCl₃(0.5 mL)]

Time (min)	Time (s)	Integration	mmol	NMR Yield (%)	[product]	0.05-[product]	ln(0.05-[product])
5	300	32149.684	0.00000	0.0	0.0000	0.0500	-2.996
10	600	391.334	0.00015	0.6	0.0003	0.0497	-3.002
15	900	96.300	0.00062	2.5	0.0012	0.0488	-3.021
20	1200	67.580	0.00089	3.6	0.0018	0.0482	-3.032
25	1500	57.306	0.00105	4.2	0.0021	0.0479	-3.039
30	1800	40.436	0.00148	5.9	0.0030	0.0470	-3.057
35	2100	34.956	0.00172	6.9	0.0034	0.0466	-3.067
40	2400	32.764	0.00183	7.3	0.0037	0.0463	-3.072
45	2700	28.844	0.00208	8.3	0.0042	0.0458	-3.083
50	3000	24.967	0.00240	9.6	0.0048	0.0452	-3.097
55	3300	21.106	0.00284	11.4	0.0057	0.0443	-3.116
60	3600	19.957	0.00301	12.0	0.0060	0.0440	-3.124
65	3900	17.979	0.00334	13.3	0.0067	0.0433	-3.139
70	4200	16.574	0.00362	14.5	0.0072	0.0428	-3.152
75	4500	15.463	0.00388	15.5	0.0078	0.0422	-3.164
80	4800	14.648	0.00410	16.4	0.0082	0.0418	-3.175
85	5100	13.793	0.00435	17.4	0.0087	0.0413	-3.187
90	5400	12.888	0.00466	18.6	0.0093	0.0407	-3.202
95	5700	11.867	0.00506	20.2	0.0101	0.0399	-3.222
100	6000	11.016	0.00545	21.8	0.0109	0.0391	-3.241
105	6300	10.634	0.00564	22.6	0.0113	0.0387	-3.252
110	6600	10.226	0.00587	23.5	0.0117	0.0383	-3.263
115	6900	9.898	0.00606	24.2	0.0121	0.0379	-3.273
120	7200	9.452	0.00635	25.4	0.0127	0.0373	-3.289

Second Trial–Background–[5a (0.025 mmol); 2-methylfuran(0.25 mmol); CDCl₃(0.5 mL)]

Time (min)	Time (s)	Integration	mmol	NMR Yield (%)	[product]	0.05-[product]	ln(0.05-[product])
5	300	575.814	0.00010	0.4	0.0002	0.0498	-3.000
10	600	210.331	0.00029	1.1	0.0006	0.0494	-3.007
15	900	120.639	0.00050	2.0	0.0010	0.0490	-3.016
20	1200	81.136	0.00074	3.0	0.0015	0.0485	-3.026
25	1500	63.773	0.00094	3.8	0.0019	0.0481	-3.034
30	1800	49.850	0.00120	4.8	0.0024	0.0476	-3.045
35	2100	42.290	0.00142	5.7	0.0028	0.0472	-3.054
40	2400	37.384	0.00160	6.4	0.0032	0.0468	-3.062
45	2700	32.203	0.00186	7.5	0.0037	0.0463	-3.073
50	3000	28.821	0.00208	8.3	0.0042	0.0458	-3.083
55	3300	25.938	0.00231	9.3	0.0046	0.0454	-3.093
60	3600	23.709	0.00253	10.1	0.0051	0.0449	-3.102
65	3900	21.975	0.00273	10.9	0.0055	0.0445	-3.111
70	4200	20.373	0.00295	11.8	0.0059	0.0441	-3.121
76	4560	19.067	0.00315	12.6	0.0063	0.0437	-3.130
80	4800	17.712	0.00339	13.6	0.0068	0.0432	-3.141
85	5100	16.676	0.00360	14.4	0.0072	0.0428	-3.151
90	5400	15.773	0.00380	15.2	0.0076	0.0424	-3.161
95	5700	14.941	0.00402	16.1	0.0080	0.0420	-3.171
100	6000	14.278	0.00420	16.8	0.0084	0.0416	-3.180
105	6300	13.494	0.00445	17.8	0.0089	0.0411	-3.192
110	6600	12.907	0.00465	18.6	0.0093	0.0407	-3.201
115	6900	12.324	0.00487	19.5	0.0097	0.0403	-3.212
120	7200	11.792	0.00509	20.4	0.0102	0.0398	-3.223

First Trial–[**5a** (0.025 mmol); 2-methylfuran(0.25 mmol); **1c** (0.005 mmol); CDCl₃(0.5 mL)]

First Trial–[5a (0.025 mmol); 2-methylfuran(0.25 mmol); 3a (0.005 mmol); CDCl₃(0.5 mL)]

UV / Vis. Titration Binding Study of Benzylidene Barbiturate Chromophore

with Amide-Based HB-DAD Organocatalysts

Barbiturate 9 was synthesized and characterized according to literature reports.^[2-3]

(A) Preparation of Stock Solution of 9

 2×10^{-4} M (2×10^{-2} mmol of barbiturate **9** in 100.0 mL of CH₂Cl₂)

(B) Preparation of Stock Solution of HB-DAD Organocatalysts

9.67 x 10⁻³ M (9.67 x 10⁻² mmol of HB-DAD organocatalysts in 10.0 mL of CH₂Cl₂)

(C) Preparation of Samples of HB-DAD Organocatalysts and Barbiturate 9 Mixture^[3]

Ten graduated flasks (5 mL) were treated with 0.5 mL of stock solution of barbiturate **9** (final concentration: 2 x 10^{-5} M) and 0, 20, 40, 80, 160, 320, 640, 1260, 2560, 3000 µL (corresponding to a 2-290 fold excess) of a stock solution of HB-DAD organocatalysts, and filled up to 5 mL with CH₂Cl₂. The change in absorbance was monitored and evaluated by linearized Scatchard plot (S1). The given values of K_A were the average of two runs.

(D) Linearized Scatchard Plot

$$\frac{\Delta A}{d \cdot [R]} = -\frac{\Delta A \cdot K}{d} + K \cdot \Delta \varepsilon \cdot [S]$$
(S1)

[S]: Concentration of benzylidene barbiturate chromophore [R]: Concentration of amide-based HB-DAD organocatalysts *K*: Binding Constant ΔA : Change of absorbance $\Delta \varepsilon$: Molar absorptivity In Scatchard Plot *K* = - (slope) $\Delta \varepsilon = (x-intercept) / [S]$

	6			
Entry	HB-DAD Organocatalysts	1 st Trial	2^{nd} Trial K_A	Averaged K_A
		K_A (M ⁻¹)	(M^{-1})	(M^{-1})
1	CI	8575	9298	8936 (±723)
	$F_{3}C \xrightarrow{N} N \xrightarrow{N} CF_{3}$			
2		6264	6631	6447 (±380)
3	$F_{3}C \overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}$	7557	7937	7747 (±367)
4		5404	4385	4895 (±1019)

Table S7. Binding constant determinations with UV / Vis. titration method

Table S8. The rate constants and binding constants of HB-DAD organocatalysts

Entry	Catalysts	$K_A(\mathbf{M}^{-1})$	$\ln K_A$	k _{rel}	lnk _{rel}
1	1 a	8936	9.10	2.94	1.08
2	1b	6447	8.96	1.79	0.58
3	2a	7747	8.77	2.24	0.80
4	2b	4895	8.50	1.39	0.33

Reference of UV / Vis. Titration Experiment

[2] a) K. A. Connors, *Binding Constants: The Measurement of Molecualar Complex Stability*, Wiley-VCH, Weinheim, 1987; b) C. W. Davies, *Ion association*, Butterworths, Washington, 1962, Ch. 4.

[3] M. Bauer, S. Spange, Angew. Chem. Int. Ed. 2011, 50, 9727.

First Trial of Binding Constant of 1a with 9

Second Trial of Binding Constant of 1a with 9

First Trial of Binding Constant of 1b with 9

UV / Vis. Spectra of HB-ADA chromophore

Second Trial of Binding Constant of 1b with 9

First Trial of Binding Constant of 2a with 9

Second Trial of Binding Constant of 2a with 9

First Trial of Binding Constant of 2b with 9

Second Trial of Binding Constant of 2b with 9

ppm (t1)

ppm (t1)

8.372 8.372 7.156 7.147 7.147 7.147 5.992

200 150 100 50 0 ppm (t1)

X-Ray Crystallography of 1a

Table 1. Crystal data and structure refinement for B	CLKC35 (13 Mar 2013).		
Identification code	lkc35		
Empirical formula	$(C_8H_3ClF_6N_4O_{3)}.H_2O$		
Formula weight	354.61		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 5.0503(2) Å	α= 90°.	
	b = 18.9742(7) Å	$\beta = 97.537(2)^{\circ}.$	
	c = 13.6338(5) Å	$\gamma = 90^{\circ}$.	
Volume	1295.18(8) Å ³		
Z	4		
Density (calculated)	1.819 Mg/m ³		
Absorption coefficient	0.389 mm ⁻¹		
F(000)	704		
Crystal size	0.60 x 0.40 x 0.30 mm ³		
Theta range for data collection	1.85 to 29.27°.		
Index ranges	-6<=h<=6, -25<=k<=25, -18<=l<=18		
Reflections collected	23780		
Independent reflections	3410 [R(int) = 0.0440]		
Completeness to theta = 29.27°	97.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.5904		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3410 / 0 / 220		
Goodness-of-fit on F ²	1.000		
Final R indices [I>2sigma(I)]	R1 = 0.0844, $wR2 = 0.2172$		
R indices (all data)	R1 = 0.1113, $wR2 = 0.2413$		
Extinction coefficient	0.016(2)		
Largest diff. peak and hole	0.797 and -0.558 e.Å ⁻³		

	X	У	Z	U(eq)
 Cl(1)	5384(2)	692(1)	7024(1)	71(1)
O(1W)	-502(4)	2536(1)	7099(1)	56(1)
O(1)	69(5)	2846(1)	3379(2)	64(1)
O(2)	9961(5)	475(1)	3911(2)	66(1)
N(1)	3860(4)	1927(1)	4266(2)	45(1)
N(2)	3011(5)	1665(1)	5914(2)	45(1)
N(3)	749(4)	2560(1)	5032(2)	46(1)
N(4)	6850(5)	1331(1)	3481(2)	48(1)
C(1)	2635(5)	2018(1)	5055(2)	42(1)
C(2)	4830(5)	1159(1)	5945(2)	44(1)
C(3)	6257(5)	993(1)	5179(2)	45(1)
C(4)	5667(5)	1402(1)	4340(2)	42(1)
C(5)	-277(5)	2933(1)	4224(2)	46(1)
C(6)	-2026(7)	3557(2)	4466(2)	58(1)
C(7)	8784(5)	868(2)	3322(2)	48(1)
C(8)	9428(6)	877(2)	2245(2)	54(1)
F(1)	-3935(5)	3679(1)	3735(2)	88(1)
F(2)	-614(6)	4130(1)	4595(2)	109(1)
F(3)	-3169(5)	3446(1)	5266(2)	110(1)
F(4)	8798(6)	1474(2)	1792(2)	138(1)
F(5)	8169(8)	405(2)	1738(2)	173(1)
F(6)	11930(5)	799(2)	2210(2)	109(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for lkc35. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

