Supporting Information

Voronoi Polyhedra Probing of Hydrated OH Radical

Lukasz Kazmierczak and Dorota Swiatla-Wojcik*
Institute of Applied Radiation Chemistry, the Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland

Mathematical details on construction of VP. Let $C\left(x_{0}, y_{0}, z_{0}\right)$ and $O_{\mathrm{i}}\left(x_{\mathrm{i}}, y_{\mathrm{i}}, z_{\mathrm{i}}\right)(i=1,2, \ldots, N)$ denote the central point (the radical oxygen atom) and the oxygen atom of the i-th molecule in the spherical neighbourhood of C. The equation of a plain Π_{i} bisecting the segment $C O_{\mathrm{i}}$ is given by:

$$
\begin{equation*}
\underset{(x, y, z) \in \Pi_{i}}{\forall} A_{i} x+B_{i} y+C_{i} z+D_{i}=0 \tag{S1}
\end{equation*}
$$

where the coefficients $A_{\mathrm{i}} B_{\mathrm{i}}, C_{\mathrm{i}}, D_{\mathrm{i}}$ are defined as:

$$
\begin{equation*}
A_{i}=x_{i}-x_{0}, B_{i}=y_{i}-y_{0}, C_{i}=z_{i}-z_{0}, D_{i}=\frac{1}{2}\left(x_{0}^{2}+y_{0}^{2}+z_{0}^{2}-x_{i}^{2}-y_{i}^{2}-z_{i}^{2}\right) \tag{S2}
\end{equation*}
$$

The initial condition for a point $V_{\mathrm{n}}\left(x_{\mathrm{n}}, y_{\mathrm{n}}, z_{\mathrm{n}}\right)$ be a vertex of VP is that V_{n} must be the intersection of three perpendicular bisector planes. Considering intersection of any three bisector planes, $\Pi_{\mathrm{i}}, \Pi_{\mathrm{j}}$ and Π_{k}, one can determine set of points $\left\{V_{\mathrm{n}}\left(x_{\mathrm{n}}, y_{\mathrm{n}}, z_{\mathrm{n}}\right)\right\}$, where coordinates $x_{\mathrm{n}}, y_{\mathrm{n}}$, and z_{n} satisfy the following set of equations:

$$
\binom{i, j, k=1,2, \ldots, N, N}{i \neq j, i \neq k, j \neq k}\left\{\begin{array}{l}
A_{i} x_{n}+B_{i} y_{n}+C_{i} z_{n}+D_{i}=0 \tag{S3}\\
A_{j} x_{n}+B_{j} y_{n}+C_{j} z_{n}+D_{j}=0 \\
A_{k} x_{n}+B_{k} y_{n}+C_{k} z_{n}+D_{k}=0
\end{array}\right.
$$

Solution of set (S3) exists if the determinant $W=\left|\begin{array}{ccc}A_{i} & B_{i} & C_{i} \\ A_{j} & B_{j} & C_{j} \\ A_{k} & B_{k} & C_{k}\end{array}\right| \neq 0$. Then

$$
x_{n}=\frac{\left|\begin{array}{ccc}
-D_{i} & B_{i} & C_{i} \tag{S4}\\
-D_{j} & B_{j} & C_{j} \\
-D_{k} & B_{k} & C_{k}
\end{array}\right|}{W}, y_{n}=\frac{\left|\begin{array}{ccc}
A_{i} & -D_{i} & C_{i} \\
A_{j} & -D_{j} & C_{j} \\
A_{k} & -D_{k} & C_{k}
\end{array}\right|}{W}, z_{n}=\frac{\left|\begin{array}{ccc}
A_{i} & B_{i} & -D_{i} \\
A_{j} & B_{j} & -D_{j} \\
A_{k} & B_{k} & -D_{k}
\end{array}\right|}{W}
$$

If $V_{\mathrm{n}}\left(x_{\mathrm{n}}, y_{\mathrm{n}}, z_{\mathrm{n}}\right)$ is the intersection point of planes $\Pi_{\mathrm{i}}, \Pi_{\mathrm{j}}$ and Π_{k}, the second condition for $V_{\mathrm{n}}\left(x_{\mathrm{n}}, y_{\mathrm{n}}, z_{\mathrm{n}}\right)$ to be classified as a vertex of VP constructed about the central point $C\left(x_{0}, y_{0}, z_{0}\right)$ is expressed by Eq. (S5):

$$
\begin{equation*}
\underset{\substack{l=1,2, \ldots, N \\ l \neq i, l \neq j, l \neq k}}{\forall} \operatorname{sgn}\left(A_{l} x_{n}+B_{l} y_{n}+C_{l} z_{n}+D_{l}\right)=\operatorname{sgn}\left(A_{l} x_{0}+B_{l} y_{0}+C_{l} z_{0}+D_{l}\right) \tag{S5}
\end{equation*}
$$

The condition (S5) means that for all other bisector plains $\Pi_{1(l=1,2, \ldots, N, l \neq i, j, k)}$ the point $V_{\mathrm{n}}\left(x_{\mathrm{n}}, y_{\mathrm{n}}, z_{\mathrm{n}}\right)$ must be located on the same side of Π_{1} as the point $C\left(x_{0}, y_{0}, z_{0}\right)$.

Sorting of vertices belonging to each bisector plane is required to determine VP edges and then to calculate properties of the constructed VP. We assign number 1 to an arbitrarily chosen vertex belonging to the i-th bisector plane and construct a reference vector $\overrightarrow{M_{\mathrm{i}} V_{1 \mathrm{i}}}$, where M_{i} is the intersection point of $C O_{\mathrm{i}}$ line and the i-th bisector plane. Further numbering depends on the angles between the reference vector and vectors connecting M_{i} with the other vertices. Illustration of the sorting method is shown in Figure S1.

Fig. S1. Sorting of vertices belonging to the i-th bisector plane: (a) unsorted vertices and the reference vector $\overrightarrow{M_{\mathrm{i}} V_{1 i}}$; (b)-(d) sorting of vertices (e) anti-clockwise numbered vertices connected by edges.

Visualization methods. We have tested 3D-visualization of the VP by three methods using graphical facilities provided by Microsoft Excel spreadsheet application, Maple computer algebra system, and Persistence of Vision Raytracer (POV-Ray) program. All the methods require a set of coordinates of sorted vertices belonging to the individual faces of the constructed $V P$.

Microsoft Excel spreadsheet application is suitable for simple 3D-presentationof VP. To use this program we follow the Gram-Schmidt process (see Ref. 18), which is a method for orthonormalising a set of vectors in an inner product space. We set the origin of a coordinate system in the VP centre $C\left(x_{0}, y_{0}, z_{0}\right)$ and accordingly recalculate coordinates of all vertices. Then a point of view $P(\cos \alpha \cos \beta, \sin \alpha \cos \beta, \sin \beta)$ is selected on the sphere of unit radius, where angles α and β are defined in Fig. S2.

Fig. S2. Definition of angles α and β used in the Gram-Schmidt process: $P^{\prime}(0,0,0)$ is the orthogonal projection of the point of view $P(\cos \alpha \cos \beta, \sin \alpha \cos \beta, \sin \beta), P_{x y}$ is the orthogonal projection of P on the $x y$-plane, $P_{x z}$ is the orthogonal projection of P on the $x z$-plane, α is the angle between $P^{\prime} P_{x y}$ and the x-axis, β is the angle between $P^{\prime} P_{x z}$ and the x-axis.

Our aim is to project vertices on the plane, which contains $\overrightarrow{P^{\prime} P}$ vector. After the Gramm-Schmidt process the recalculated coordinates of the n-th vertex, $\left(a=x_{n}-x_{0}, b=y_{n^{-}} y_{0}, c=z_{n^{-}} z_{0}\right)$, are given by Eq. (S6) :
$a^{\prime}=a+\frac{\cos \alpha \cos \beta}{r} ; b^{\prime}=b+\frac{\sin \alpha \cos \beta}{r} ; c^{\prime}=c+\frac{\sin \beta}{r}$
where
$r=\frac{-1}{a \cdot \cos \alpha \cos \beta+b \cdot \sin \alpha \cos \beta+c \cdot \sin \beta}$

Rotating $\overrightarrow{P^{\prime} V_{n}^{\prime}}$ vector, where $V_{n}^{\prime}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, by the angle $(-\alpha)$ and next by $(-\beta)$, we obtain $V_{n}^{1}\left(a_{1}, b_{1}, c_{1}\right)$ and $V_{n}^{2}\left(a_{2}, b_{2}, c_{2}\right)$, expressed by Eqs. (S8) and (S9), respectively.
$a_{1}=a^{\prime} \cos \alpha+b^{\prime} \sin \alpha ; b_{1}=-a^{\prime} \sin \alpha+b^{\prime} \cos \alpha ; c_{1}=c^{\prime}$
$a_{2}=a_{1} \cos \beta+c_{1} \sin \beta ; b_{2}=b_{1} ; c_{2}=-a_{1} \sin \beta+c_{1} \cos \beta$

Selecting the VP centre as a single point and using MS ExcelChart: XY(Scatter)-Straight-Lines option for vertices belonging to each of the $V P$ faces (treated as data series) we obtain a graphical presentation of a solvation cage.

Maple computer algebra system. The Maple program offers a command-line utility and ready-touse macros accepting basic graphical options (colour, transparency, line-style, etc.). It makes 3Dvisualisation of a solvation cage intuitive and easy.

We start with the following calling sequences:

> with(plots); with(plottools);

Then, we define every face by using the sequence:
>name_of_face:=display(polygon([[coordinates_of_ $1^{\text {st }}$ _vertex],
[coordinates_of_2 ${ }^{\text {nd }}$ _vertex],...),options)

For example:
>f91:=display(polygon([[15.4,12.3,3.9],[14.4,12.7,2.1],[14.2,12.6,2.0],[14.1,8.3,3.1]]),colour=COL
OUR(RGB,32/255,178/255,170/250),linestyle=solid,thickness=2,transparency=0.0);

Optionally, the VP centre can be defined as a single point by using the sequence:
>name_of_centre:=point([coordinates],options);

For example:

C9:=point([13.5,11.7,3.9],symbol=solidcircle,symbolsize=50,colour=navy);

Finally, we visualize the defined objects by the calling the macro:
>display(name_of_face_1,name_of_face_2, ...,name_of_centre);

POV-Ray program (The Persistence of Vision Raytracer program, http://www.povray.org/)

POV-Ray program creates photo-realistic images using an advanced rendering technique, called ray-tracing. It produces very high quality images with realistic reflections, shading and perspective. The POV-Ray code is written in object-oriented C++. Fragments of the code used to visualize a solvation cage are given below.

The VP centre is defined by:
sphere
\{
<Center> Radius
[OBJECT_MODIFIERS...]
\}

For example :
sphere $\{<13.5,11.7,3.9>0.5$ texture $\{$ pigment $\{$ color $\operatorname{rgbt}<0,0,0.4>\}\}$ finish\{reflection 0.1 phong $0.1\}\}$

To visualize VP-faces we divided a given face (a convex polygon) into triangles and used the following sequence:

```
merge
    {
        triangle
    {
<Corner_1><Corner_2><Corner_3>
```

[OBJECT_MODIFIER...]
\}
\}

To visualize edges we used the sequence:

```
cylinder
    {
<Base_Point><Cap_Point> Radius
    [open][OBJECT_MODIFIERS...]
    }
```

Finally, all the defined objects were combined:

```
union
    {
sphere
    {...}
merge
    {
        triangle
    {...}
}
merge
    {
cylinder
    {...)
        }
```

