Electronic Supplementary Information

Effects of Atomic Ag on Photocatalyst AgBr surfaces: A Theoretical

Survey

Yuhua Chi,^{a b} Lianming Zhao,^{a b} Xiaoqing Lu,^{a b} Wenyue Guo,^{*a b} Yunqi Liu,^{**c} and Chi-Man Lawrence Wu^d

^aCollege of Science, China University of Petroleum, Qingdao, Shandong 266580, P.

R. China

^bKey Laboratory of New Energy Physics & Materials Science in Universities of Shandong Province, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

^cState Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China University of Petroleum, Qingdao 266580, P. R. China

^dDepartment of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China

(Correspondence should be addressed to wyguo@upc.edu.cn, liuyq@upc.edu.cn.)

$U_{Ag,d}$	U _{Br,p}	Band gap
2.0	1.8	2.798
1.8	1.5	2.703
1.6	1.3	2.633
1.4	1.1	2.563

Table S1. The Hubbard U parameters (eV) for Ag(d) and Br(p) and the resulting bandgap (eV) for bulk AgBr.

Orbitals	Bulk	Clean (100)	Adsorbed (100)	Clean (110)	Adsorbed (110)
^a Br s	1.68	1.91	1.73	1.96	1.92
^a Br p	5.37	5.4	5.35	5.4	5.38
^a Ag s	0.43	0.38	0.48	0.37	0.52
^a Ag p	0.54	0.45	0.54	0.41	0.47
^a Ag d	9.99	9.98	9.97	9.98	9.96
^b Ag s			0.84		0.63
^b Ag p			0.23		0.53
^b Ag d			9.96		9.93

Table S2. The calculated Mulliken atomic populations for the bulk, clean and atomicAg adsorbed (100) and (110) facets of AgBr.

 $^{a}Br/Ag$ represents Br/Ag_{sur} for the clean (100), Br/Ag_{1sur} for the adsorbed (100), Br/Ag_{ed} for the

clean (110), and Br/Ag_{1ed} for the adsorbed (110) facet. ${}^{b}Ag$ represents the adsorbed Ag (Ag_{ad})

Fig. S1. The PDOS of Ag_{ed} and Ag_{tro} on the atomic Ag adsorbed AgBr(110) facet.

Fig. S2. Brillouin zone of bulk AgBr in reciprocal lattice (a). Band structure of bulk AgBr (b).

Fig. S3. Intermediate structures for water dissociation on the clean AgBr(110) (a), atomic Ag adsorbed AgBr(110) (b), clean AgBr(100) (c), and atomic Ag adsorbed Br(100) (d) facets.

Section S1. Estimation of the positions of the conduction band and

the valence band

The position of the conduction band can be estimated using the equation¹:

$$E_{CB} = X - E_C - 0.5E_{g_s}$$
$$E_{VB} = E_g + E_{CB_s}$$

where E_C represents the energy of free electrons on the hydrogen scale (4.5 eV), X is the electronegativity of the semiconductor, and E_g represents the bandgap of the system.

The CBM of the bulk AgBr is calculated to be -3.42 eV (vs NHE), and the VBM to be -0.79eV (vs NHE). This VBM potential does not meet the hydrolysis to produce H₂, $\psi^0(H_2/H_2O) = 0 \ eV$ (vs NHE). But the VBM is more positive than $\psi^0(O_2/H_2O) = -1.23 \ eV$ (vs NHE), rendering water oxidization occur to generate O₂ with the help of the photogenerated holes over the AgBr.

References

[1] C. An, J. Wang, W. Jiang, M. Zhang, X. Ming, S. Wang and Q. Zhang, *Nanoscale* 2012, *4*, 5646.