
Supporting Information for

Self-doping for visible light photocatalytic purposes: construction of SiO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>:Sn<sup>2+</sup> nanostructures with tunable optical and photocatalytic performance

Menglin Sun, Yiguo Su, Chunfang Du<sup>\*</sup>, Qihang Zhao, Zhiliang Liu<sup>\*</sup>

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia



010021, P. R. China

Figure S1 Relationships between  $(\alpha hv)^2$  and photon energy of SiO<sub>2</sub>/SnO<sub>2</sub>.

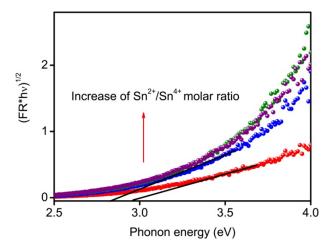



Figure S2 Relationships between  $(\alpha h\nu)^{1/2}$  and photon energy of SiO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>:Sn<sup>2+</sup> nanostructures with different Sn<sup>2+</sup>/Sn<sup>4+</sup> molar ratio.

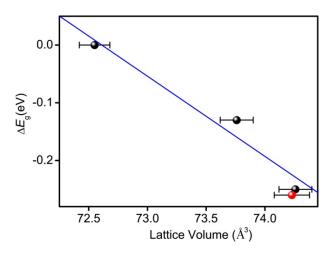



Figure S3 Correlation between the band gap energies and the lattice volume of  $SiO_2/SnO_2/SnO_2:Sn^{2+}$  nanostructures.



Figure S4 Normalized concentration of methyl orange versus visible light irradiation time in the absence of  $SiO_2/SnO_2/SnO_2:Sn^{2+}$ .

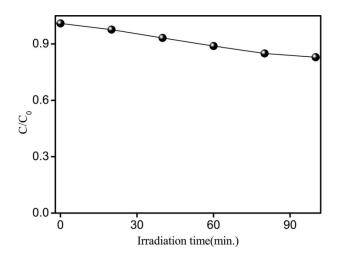



Figure S5 Normalized concentration of methyl orange versus visible light irradiation

time in the absence of SiO<sub>2</sub>.

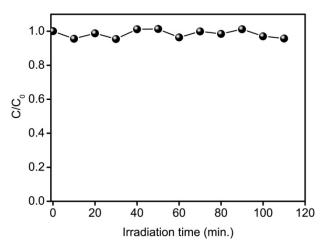



Figure S6 Normalized concentration of methyl orange versus visible light irradiation time in the absence of  $SnO_2$ :  $Sn^{2+}$  nanocrystals.

 $SnO_2:Sn^{2+}$  nanocrystals were prepared via a facile hydrothermal method. Briefly, 0.228 g  $SnCl_2$  was dissolved in 20 mL ethanol with vigorous stirring to form a suspension. This suspension was sealed in 100 mL Teflon-lined stainless steel auto claves and reacted at 180 °C for 18 hours. The final product was washed with distilled water several times and dried at 60 °C for 3 hours.