Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

LiYF₄:Yb³⁺, Er³⁺ Upconverting Submicro-Particles: Synthesis and Formation Mechanism Exploration

Xiangyu Zhang,^a Minqiang Wang, ^{*a} Jijun Ding,^a Xiaohui Song,^a Jing Liu,^a Jinyou Shao,^b and Yajing Li^a

^a Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry; International Center for Dielectric Research Xi'an Jiaotong University Xi'an 710049, China

^b State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Figure S1. (a) SEM images of LiYF₄: 20 mol% Yb, 2 mol% Er micro-octahedrons and (b) XRD patterns of LiYF₄ micro-octahedrons and r-GO/LiYF₄ submicro-crystals obtained before and after annealing for 2 h at 500 °C. The standard peaks in the pure tetragonal LiYF₄ (JCPDS file number 17-0874) are used as a reference.

Figure S2. TG-DSC curves of LiYF₄:Yb³⁺, Er³⁺/r-GO submicro-composites.

Figure S3. FTIR spectra of tetragonal LiYF₄:20 mol% Yb, 2 mol% Er microoctahedrons (a) and r-GO/LiYF₄ submicro-crystals with (c) and without (b) annealing at 500 °C for 2 h.

Figure S4. Upconverting emission spectra of LiYF₄: 20 mol% Yb, 2 mol% Er microoctahedrons with and without sintering at 500 °C for 2 h. The wavelength of excitation is 977 nm.