
Polyimide nanocomposites with functionalized SiO₂ nanoparticles: Enhanced processability, thermal and mechanical properties

Young-Jae Kim, a Jong-Heon Kim, Shin-Woo Ha, a, C Dongil Kwon, b Jin-Kyu Lee*a

^aDepartment of Chemistry, Seoul National University, Seoul 151-747, Korea
^bDepartment of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
^cPresent address: Department of Medicine, Emory University, Atlanta, GA 30322, USA

Figure. S1 Size distributions of (a) SiO_2 in EtOH, (b) DETAS-SiO_2 in EtOH, (c) as-prepared P-SiO_2 in NMP, and (d) P-SiO_2 in NMP after being stored for one year.

Figure. S2 TEM images of unmodified SiO_2 -PI nanocomposites. The TEM images were obtained by spin-coating SiO_2 -PAA solution onto a TEM grid, followed by thermal imidization.

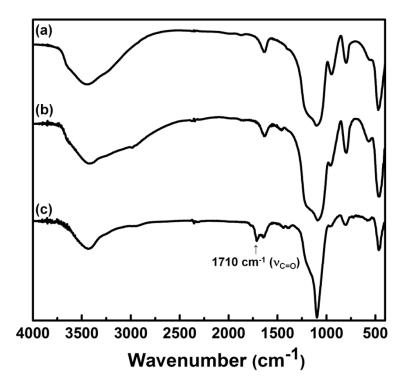
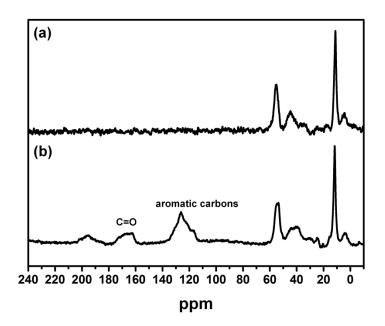
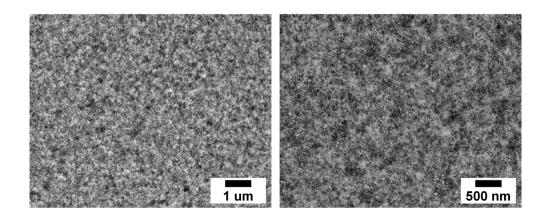


Figure. S3 FT-IR spectra of (a) unmodified silica nanoparticles, (b) DETAS-SiO₂, and (c) P-SiO₂.

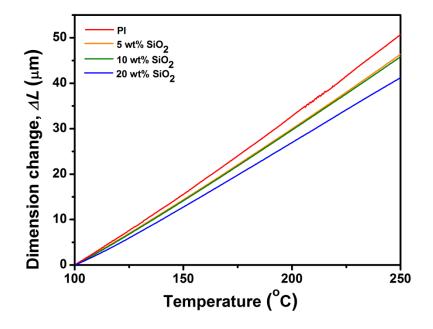

Figure. S4 Solid ¹³C CP/MAS NMR spectra of (a) DETAS-SiO₂ and (b) P-SiO₂.

Table S1.	Calculated	molar ratio	of organic	groups on SiO	$_2$ nanoparticles by TGA.

	Weight percent (wt%)	Molecular weight (g/mol)	Relative amount from 100 g sample (mol)	Mole percent of organic groups (mol%)
SiO ₂	87.4	60 (for fully condensed SiO ₂)	1.5	
DETAS on the DETAS-SiO ₂	5.6	265.43 (for DETAS)	2.1×10 ⁻²	1.4
Phthalic anhydride 7 on the P-SiO ₂		148.12 (for phtalic anhydride)	4.7×10 ⁻²	3.1

Figure. S5 TEM images of 40 wt% SiO₂-PI nanocomposites. The TEM images were obtained by spin-coating SiO₂-PAA solution onto a TEM grid, followed by thermal imidization.

Figure. S6 Thermal expansion of neat PI film and SiO₂-PI nanocomposite films with various SiO₂ contents.

Calculation details

The mathematical equation¹ is described as follows:

$$\alpha_c = \alpha_f \phi_f + \alpha_m \phi_m$$

where the subscripts c, *m*, *f* represent nanocomposites, polymer, and filler phase, respectively. α and ϕ are coefficient of thermal expansion and the volume fraction of the constituents. The coefficient of thermal expansion for polyimide and SiO₂ are 33.9 and 0.55 (10^{-6/°}C), respectively.

Table S2. The experimental and calculated value of coefficients of thermal expansion of polyimide and SiO₂-polyimide nanocomposites

		Experimental value	Calculated value	
wt. %	vol. %	(10 ⁻⁶ /°C)	(10 ⁻⁶ /°C)	
Neat PI	-	33.9	-	
5	2.2	30.8	33.1	
10	4.6	30.6	32.2	
20	9.8	27.8	30.2	

1.H. S. Katz and J. V. Mileski, Handbook Of Fillers For Plastics, Springer, 1987, 49.