Supplementary Information

New Route to Nanoscale Ceramics in Asymmetric Reaction Fields

of Carbon Nanospaces

Tomonori Ohba, * Yuki Ohyama, and Hirofumi Kanoh

Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan

*E-mail: ohba@pchem2.s.chiba-u.ac.jp

Experimental Details

Preparation of BaTiO₃. Barium ethoxide (>99%, Kojundo Chemical Laboratory) and titanium tetraisopropoxide (>99%, Kojundo Chemical Laboratory) were used as precursors. Methanol (>99%, Wako Pure Chemical Industries, Ltd.) and methoxyethanol (>99%, Wako Pure Chemical Industries, Ltd.) were used as the solvent. The volume ratio of methanol to methoxyethanol was maintained at 3:2. Barium ethoxide solution was prepared by dissolving barium ethoxide in methanol-methoxyethanol solvent by stirring with a magnetic stirrer for several minutes, in a N₂-filled glove box (300 ppm of O₂ and H₂O). Two solutions of barium ethoxide solution and titanium tetraisopropoxide were subsequently mixed in 2:1 molar ratios (the Ba/Ti molar ratio was 2) and stirred for 3 h at 500 rpm. The concentrations of titanium tetraisopropoxide were 50, 100, 200, 400, and 600 mmol L⁻¹. ACFs (Ad'all W15) were soaked in the mixed solution for confined-BaTiO₃ preparation. For nano-BaTiO₃ preparation, a mixed solution without impregnated ACFs was used for the subsequent hydrolysis reaction. Hydrolysis was initiated by addition of 5-20 times the volume of water after the two stock solutions were mixed, and stirring in a Teflon-lined stainless-steel autoclave. The solvothermal reaction of the final suspension in the autoclave was conducted at 400 K for 24 h. The resultant product was repeatedly rinsed with boiling water and dried at 333 K. Micro-BaTiO₃ and crystalline-BaTiO₃ were prepared using barium carbonate (>98%, Wako Pure Chemical Industries, Ltd.) and rutile-type titanium dioxide (>99%, Wako Pure Chemical Industries, Ltd.) A stoichiometric mixture of barium carbonate and titanium dioxide was thoroughly ground, and pressed into a pellet under more than 60 MPa for 30 min. The pellets were heat treated at 1073 K or 1173 K for 24 h for micro-BaTiO₃, and 1073 K for 24 h, 1373 K for 24 h, and 1473 K for 48 h for crystalline-BaTiO₃, followed by grinding and pelletizing. The scheme of the preparation process is shown in Fig. S1.

Characterization. XRD patterns of BaTiO₃ were collected with a Rigaku Ultima IV diffractometer at room temperature, using Cu K α radiation ($\lambda = 0.1541$ nm), at 40 kV and 40 mA. The patterns were collected in step-mode with a resolution of 0.01° and a count time of 3 s for each step from 10 to 90°. Crystallite sizes were evaluated from the Scherrer equation, $D = 0.89\lambda/(B\cos\theta)$, using full-width at half-

maximum values of several selected profiles, where *D*, *B*, and θ are the particle size, full-width at halfmaximum of a peak, and scattering angle, respectively. The particle sizes were observed using TEM (JEOL JEM-2100F) at 120 kV and SEM (JEOL JSM-6335F) at 2–5 kV. High-angle annular dark-field scanning TEM and electron-dispersion spectroscopy were performed using the JEOL JEM-2100F at 200 kV. Finely ground BaTiO₃ crystals were dispersed in ethanol and placed on grids prior to TEM measurements. TG analysis of confined-BaTiO₃ was performed, using a Shimadzu DTG-60AH instrument, by heating from room temperature to 1200 K at a rate of 10 K min⁻¹ under a dried air flow of 100 mL min⁻¹. The N₂ adsorption isotherms at 77 K were measured using a Quantachrome Autosorb-1 instrument. BaTiO₃ crystals were heated at 423 K below 0.1 mPa for more than 2 h prior to measurement of the N₂ adsorption isotherms. Raman spectroscopy of BaTiO₃ was performed using a 1 mW Nd:YAG laser (NRS-3100, JASCO Co., Japan).

Figure S1. Schematic representation of preparation of $BaTiO_3$ by sol–gel solvothermal (a) and solid-state (b) reactions.

Figure S2. (a) TG measurements of confined-BaTiO₃ and ACFs in dried air atmosphere as function of temperature. Weight losses indicate ACF combustion. Amounts of residue after TG measurements were 40-45% for all confined-BaTiO₃ samples, but no residue was observed for ACFs, indicating that the weight ratios of BaTiO₃ to ACFs were 67–82%. This suggests that ACF nanopore volumes of 0.11–0.14 mL g⁻¹ are occupied by BaTiO₃ particles, calculated using a BaTiO₃ density of 6.02 g mL⁻¹. (b) N₂ adsorption isotherms of confined-BaTiO₃ and ACFs at 77 K. The decreases in N₂ adsorbed amounts for confined-BaTiO₃ compared with ACFs were attributed to the occupation by BaTiO₃ of carbon nanospaces. Nanopore volumes and specific surface areas obtained by α_S analysis of N₂ adsorption isotherms decreased from 1.04 mL g⁻¹ to 0.46–0.50 mL g⁻¹, and from 1600 m² g⁻¹ to 750 m² g⁻¹. The significant decreases compared with the estimated occupancies obtained using TG, mentioned above, suggest that confined-BaTiO₃ is present in the ACF nanopores, because of significant blocking of N_2 penetration into these nanopores. (c) Schematic image of confined-BaTiO₃ in nanopores, based on the above TG results and N₂ adsorption isotherms. The average nanopore width and length were 1.3 and 4 nm, respectively, determined from $\alpha_{\rm S}$ analysis and (10) peaks in the XRD of ACFs. Red spheres, blue octahedrons, and black rectangles indicate Ba, TiO₃, and ACF carbon walls, respectively.

Figure S3. SEM or TEM images, electron diffraction patterns (the same as in Fig. 2), highangle annular dark-field scanning TEM images, and energy-dispersive spectroscopic images of crystalline-BaTiO₃ (a), micro-BaTiO₃ (b), nano-BaTiO₃ (c), and confined-BaTiO₃ (d). The microscopic images show similar particle sizes to those in Fig. 2. Electron diffraction patterns of particles have peaks originating from BaTiO₃ crystals, and energy-dispersive spectroscopy suggests that these particles are composed of Ba, Ti, and O atoms, therefore these particles are various types of BaTiO₃ crystals.

Figure S4. N₂ adsorption isotherms at 77 K for evaluating and comparing BaTiO₃ particle sizes. N₂ adsorption isotherms of crystalline- and micro-BaTiO₃ (a), nano-BaTiO₃ (b), and confined-BaTiO₃ after removal of ACFs by combustion at 673 K for 48 h (c). BET specific surface areas of crystalline-BaTiO₃, and micro-BaTiO₃ at 1273, 1173 and 1073 K were 1.3, 2.4, 6.7, and 11.5 m² g⁻¹, respectively, corresponding to particle diameters of 750, 408, 150, and 87 nm, respectively, assuming spherical particles. In the same way, the particle sizes of nano-BaTiO₃ were 3.1, 3.5, 4.8, and 7.0 nm for Ti concentrations of 50 (323 m² g⁻¹), 100 (285 m² g⁻¹), 200 (207 m² g⁻¹), and 400 mM (143 m² g⁻¹), respectively. The particle sizes of confined-BaTiO₃ were 3.6, 4.1, and 2.9 nm for Ti concentrations of 50 (278 m² g⁻¹), 200 (246 m² g⁻¹), and 600 mM (340 m² g⁻¹), respectively. (d) Comparison of particle diameters evaluated from N₂ adsorption isotherms and TEM or SEM images with crystallite sizes evaluated from XRD.

Figure S5-1. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of crystalline- $BaTiO_3$ (a), and micro- $BaTiO_3$ prepared by heat treatment at 1273 K (b), 1173 K (c), and 1073 K, with corresponding particle sizes.

Figure S5-2. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of nano- $BaTiO_3$ prepared under conditions [Ba] = 800 mmol L⁻¹, [Ti] = 400 mmol L⁻¹, and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-3. Evaluation of BaTiO₃ crystal structures. XRD patterns of nano-BaTiO₃ prepared under conditions [Ba] = 400 mmol L⁻¹ and [Ti] = 200 mmol L⁻¹ (a–c), or [Ba] = 400 mmol L⁻¹ and [Ti] = 400 mmol L⁻¹ (d), and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-4. Evaluation $BaTiO_3$ crystal structures. XRD patterns of nano- $BaTiO_3$ prepared under conditions [Ba] = 400 mmol L⁻¹ and [Ti] = 200 mmol L⁻¹, and heat treatment at 600 K, with corresponding particle sizes.

Figure S5-5. Evaluation of BaTiO₃ crystal structures. XRD patterns of nano-BaTiO₃ prepared under conditions [Ba] = 200 mmol L⁻¹ and [Ti] = 200 mmol L⁻¹ (a, b), or [Ba] = 200 mmol L⁻¹ and [Ti] = 100 mmol L⁻¹ (c, d), and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-6. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of nano- $BaTiO_3$ prepared under conditions [Ba] = 100 mmol L⁻¹ and [Ti] = 50 mmol L⁻¹ (a–c), or [Ba] = 100 mmol L⁻¹ and [Ti] = 100 mmol L⁻¹ (d), and heat treatment at 400 K, with corresponding particle sizes.

Particle Size 2.8 nm (XRD)

Particle Size 2.5 nm (XRD)

Figure S5-7. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of confined- $BaTiO_3$ prepared under conditions [Ba] = 800 mmol L⁻¹ and [Ti] = 400 mmol L⁻¹, and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-8. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of confined- $BaTiO_3$ prepared under conditions [Ba] = 800 mmol L⁻¹ and [Ti] = 400 mmol L⁻¹, and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-9. Evaluation of $BaT_1^2O_3^{//}dc_{FY}^2$ stal structures. XRD patterns of confined-BaTiO₃ prepared under conditions [Ba] = 400 mmol L⁻¹ and [Ti] = 200 mmol L⁻¹(a–c), or [Ba] = 400 mmol L⁻¹ and [Ti] = 400 mmol L⁻¹ (d), and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-10. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of confined- $BaTiO_3$ prepared under conditions [Ba] = 200 mmol L⁻¹ and [Ti] = 100 mmol L⁻¹, and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-11. Evaluation of BaTiO₃ crystal structures. XRD patterns of confined-BaTiO₃ prepared under conditions [Ba] = 200 mmol L⁻¹ and [Ti] = 100 mmol L⁻¹(a, b), or [Ba] = 200 mmol L⁻¹ and [Ti] = 200 mmol L⁻¹ (c), and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-12. Evaluation of BaTiO₃ crystal structures. XRD patterns of confined-BaTiO₃ prepared under conditions [Ba] = 100 mmol L⁻¹ and [Ti] = 50 mmol L⁻¹, and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-13. Evaluation of $BaTiO_3^{2\theta/degree}$ structures. XRD patterns of confined-BaTiO₃ prepared under conditions [Ba] = 100 mmol L⁻¹ and [Ti] = 50 mmol L⁻¹(a, b), [Ba] = 100 mmol L⁻¹ and [Ti] = 100 mmol L⁻¹ (c), and [Ba] = 50 mmol L⁻¹ and [Ti] = 50 mmol L⁻¹ (d), and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-14. Evaluation of BaTiO₃ crystal structures. XRD patterns of confined-BaTiO₃ prepared under conditions [Ba] = 20 mmol L⁻¹ and [Ti] = 10 mmol L⁻¹, and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-15. Evaluation of BaTiO₃ crystal structures. XRD patterns of confined-BaTiO₃ prepared under conditions [Ba] = 20 mmol L⁻¹ and [Ti] = 10 mmol L⁻¹, and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-16. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of confined- $BaTiO_3$ prepared under conditions [Ba] = 1200 mmol L⁻¹ and [Ti] = 600 mmol L⁻¹ (a) and after removal of ACFs (b), and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-17. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of confined- $BaTiO_3$ prepared under conditions [Ba] = 400 mmol L⁻¹ and [Ti] = 200 mmol L⁻¹ (a) and after removal of ACFs (b), and heat treatment at 400 K, with corresponding particle sizes.

Figure S5-18. Evaluation of $BaTiO_3$ crystal structures. XRD patterns of confined- $BaTiO_3$ prepared under conditions [Ba] = 100 mmol L⁻¹ and [Ti] = 50 mmol L⁻¹ (a) and after removal of ACFs (b), and heat treatment at 400 K, with corresponding particle sizes.

Figure S6. Evaluation of representative BaTiO₃ crystal structures. Experimental and simulated XRD patterns are indicated by coloured and black curves, respectively.