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Experimental Details

Preparation of BaTiO;. Barium ethoxide (>99%, Kojundo Chemical Laboratory) and titanium
tetraisopropoxide (>99%, Kojundo Chemical Laboratory) were used as precursors. Methanol (>99%,
Wako Pure Chemical Industries, Ltd.) and methoxyethanol (>99%, Wako Pure Chemical Industries,
Ltd.) were used as the solvent. The volume ratio of methanol to methoxyethanol was maintained at 3:2.
Barium ethoxide solution was prepared by dissolving barium ethoxide in methanol-methoxyethanol
solvent by stirring with a magnetic stirrer for several minutes, in a N,-filled glove box (300 ppm of O,
and H,0). Two solutions of barium ethoxide solution and titanium tetraisopropoxide were subsequently
mixed in 2:1 molar ratios (the Ba/Ti molar ratio was 2) and stirred for 3 h at 500 rpm. The
concentrations of titanium tetraisopropoxide were 50, 100, 200, 400, and 600 mmol L™!. ACFs (Ad’all
W15) were soaked in the mixed solution for confined-BaTiO; preparation. For nano-BaTiOj; preparation,
a mixed solution without impregnated ACFs was used for the subsequent hydrolysis reaction.
Hydrolysis was initiated by addition of 5-20 times the volume of water after the two stock solutions
were mixed, and stirring in a Teflon-lined stainless-steel autoclave. The solvothermal reaction of the
final suspension in the autoclave was conducted at 400 K for 24 h. The resultant product was repeatedly
rinsed with boiling water and dried at 333 K. Micro-BaTiO; and crystalline-BaTiO; were prepared
using barium carbonate (>98%, Wako Pure Chemical Industries, Ltd.) and rutile-type titanium dioxide
(>99%, Wako Pure Chemical Industries, Ltd.) A stoichiometric mixture of barium carbonate and
titanium dioxide was thoroughly ground, and pressed into a pellet under more than 60 MPa for 30 min.
The pellets were heat treated at 1073 K or 1173 K for 24 h for micro-BaTiO;, and 1073 K for 24 h, 1373
K for 24 h, and 1473 K for 48 h for crystalline-BaTiO;, followed by grinding and pelletizing. The
scheme of the preparation process is shown in Fig. S1.

Characterization. XRD patterns of BaTiO3; were collected with a Rigaku Ultima IV diffractometer at
room temperature, using Cu Ko radiation (4 = 0.1541 nm), at 40 kV and 40 mA. The patterns were
collected in step-mode with a resolution of 0.01° and a count time of 3 s for each step from 10 to 90°.

Crystallite sizes were evaluated from the Scherrer equation, D = 0.894/(Bcos#), using full-width at half-
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maximum values of several selected profiles, where D, B, and @ are the particle size, full-width at half-
maximum of a peak, and scattering angle, respectively. The particle sizes were observed using TEM
(JEOL JEM-2100F) at 120 kV and SEM (JEOL JSM-6335F) at 2-5 kV. High-angle annular dark-field
scanning TEM and electron-dispersion spectroscopy were performed using the JEOL JEM-2100F at 200
kV. Finely ground BaTiO; crystals were dispersed in ethanol and placed on grids prior to TEM
measurements. TG analysis of confined-BaTiO; was performed, using a Shimadzu DTG-60AH
instrument, by heating from room temperature to 1200 K at a rate of 10 K min™! under a dried air flow
of 100 mL min~!. The N, adsorption isotherms at 77 K were measured using a Quantachrome Autosorb-
1 instrument. BaTiO; crystals were heated at 423 K below 0.1 mPa for more than 2 h prior to
measurement of the N, adsorption isotherms. Raman spectroscopy of BaTiO; was performed using a 1

mW Nd:YAG laser (NRS-3100, JASCO Co., Japan).
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Figure S1. Schematic representation of preparation of BaTiO3; by sol-gel solvothermal (a) and

solid-state (b) reactions.

S4



100

80

60

40

Weight Loss / %

20

Adsorbed Amount / mg g

O | |
400 600 800 1000 1200
Temperature / K

Figure S2. (a) TG measurements of confined-BaTiO; and ACFs in dried air atmosphere as
function of temperature. Weight losses indicate ACF combustion. Amounts of residue after TG
measurements were 40-45% for all confined-BaTiO; samples, but no residue was observed
for ACFs, indicating that the weight ratios of BaTiO3; to ACFs were 67-82%. This suggests that
ACF nanopore volumes of 0.11-0.14 mL g-' are occupied by BaTiO3 particles, calculated
using a BaTiO3 density of 6.02 g mL~'. (b) N, adsorption isotherms of confined-BaTiO3; and
ACFs at 77 K. The decreases in N, adsorbed amounts for confined-BaTiO3; compared with
ACFs were attributed to the occupation by BaTiO3 of carbon nanospaces. Nanopore volumes
and specific surface areas obtained by as analysis of N, adsorption isotherms decreased from
1.04 mL g' to 0.46-0.50 mL g', and from 1600 m2? g~' to 750 m? g~'. The significant
decreases compared with the estimated occupancies obtained using TG, mentioned above,
suggest that confined-BaTiOj; is present in the ACF nanopores, because of significant blocking
of N, penetration into these nanopores. (c) Schematic image of confined-BaTiO3 in nanopores,
based on the above TG results and N, adsorption isotherms. The average nanopore width and
length were 1.3 and 4 nm, respectively, determined from ag analysis and (10) peaks in the
XRD of ACFs. Red spheres, blue octahedrons, and black rectangles indicate Ba, TiO3, and
ACF carbon walls, respectively.
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Figure S3. SEM or TEM images, electron diffraction patterns (the same as in Fig. 2), high-
angle annular dark-field scanning TEM images, and energy-dispersive spectroscopic images
of crystalline-BaTiO3 (a), micro-BaTiO3 (b), nano-BaTiO; (c), and confined-BaTiO; (d). The
microscopic images show similar particle sizes to those in Fig. 2. Electron diffraction patterns
of particles have peaks originating from BaTiO3 crystals, and energy-dispersive spectroscopy
suggests that these particles are composed of Ba, Ti, and O atoms, therefore these particles

are various types of BaTiO; crystals.
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Figure S4. N, adsorption isotherms at 77 K for evaluating and comparing BaTiO3 particle
sizes. N, adsorption isotherms of crystalline- and micro-BaTiO3 (a), nano-BaTiO; (b), and
confined-BaTiO3; after removal of ACFs by combustion at 673 K for 48 h (c). BET specific
surface areas of crystalline-BaTiO3, and micro-BaTiO3 at 1273, 1173 and 1073 K were 1.3, 2.4,
6.7, and 11.5 m? g™, respectively, corresponding to particle diameters of 750, 408, 150, and
87 nm, respectively, assuming spherical particles. In the same way, the particle sizes of nano-
BaTiO; were 3.1, 3.5, 4.8, and 7.0 nm for Ti concentrations of 50 (323 m? g'), 100 (285 m?
g™"), 200 (207 m2 g7'), and 400 mM (143 m2 g'), respectively. The particle sizes of confined-
BaTiO; were 3.6, 4.1, and 2.9 nm for Ti concentrations of 50 (278 m2 g='), 200 (246 m2 g7"),
and 600 mM (340 m? g7"), respectively. (d) Comparison of particle diameters evaluated from
N, adsorption isotherms and TEM or SEM images with crystallite sizes evaluated from XRD.
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Figure S5-1. Evaluation of BaTiOj; crystal structures. XRD patterns of crystalline-BaTiO3 (a),

and micro-BaTiO3 prepared by heat treatment at 1273 K (b), 1173 K (c), and 1073 K, with

corresponding particle sizes.
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Figure S5-2. Evaluation of BaTiOj crystal structures. XRD patterns of nano-BaTiO3 prepared
under conditions [Ba] = 800 mmol L', [Ti] = 400 mmol L', and heat treatment at 400 K, with

corresponding particle sizes.
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Figure S5-3. Evaluation of BaTiOj crystal structures. XRD patterns of nano-BaTiO3 prepared
under conditions [Ba] = 400 mmol L~' and [Ti] = 200 mmol L' (a—c), or [Ba] = 400 mmol L™’

and [Ti] = 400 mmol L' (d), and heat treatment at 400 K, with corresponding particle sizes.
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Figure S5-4. Evaluation BaTiOj crystal structures. XRD patterns of nano-BaTiO3; prepared
under conditions [Ba] = 400 mmol L™' and [Ti] = 200 mmol L', and heat treatment at 600 K,

with corresponding particle sizes.
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Figure S5-5. Evaluation of BaTiOj crystal structures. XRD patterns of nano-BaTiO3 prepared

under conditions [Ba] = 200 mmol L' and [Ti] = 200 mmol L™ (a, b), or [Ba] = 200 mmol L™’

and [Ti] = 100 mmol L' (c, d), and heat treatment at 400 K, with corresponding particle sizes.
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Figure S5-6. Evaluation of BaTiOj crystal structures. XRD patterns of nano-BaTiO3 prepared
under conditions [Ba] = 100 mmol L' and [Ti] = 50 mmol L~ (a—c), or [Ba] = 100 mmol L' and

[Ti] = 100 mmol L™' (d), and heat treatment at 400 K, with corresponding particle sizes.
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Figure S5-7. Evaluation of BaTiO3; crystal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 800 mmol L' and [Ti] = 400 mmol L', and heat treatment at

400 K, with corresponding particle sizes.
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Figure S5-8. Evaluation of BaTiO; crystal structures. XRD patterns of confined-BaTiO;

prepared under conditions [Ba] = 800 mmol L~ and [Ti] = 400 mmol L', and heat treatment at

400 K, with corresponding particle sizes.
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Figure S5-9. Evaluation of BaT®,9E&Stal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 400 mmol L™' and [Ti] = 200 mmol L~"'(a—c), or [Ba] = 400

mmol L' and [Ti] = 400 mmol L= (d), and heat treatment at 400 K, with corresponding particle
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Figure S5-10. Evaluation of BaTiO3 crystal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 200 mmol L=' and [Ti] = 100 mmol L™, and heat treatment at

400 K, with corresponding particle sizes.
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Figure S5-11. Evaluation of BaTiO3 crystal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 200 mmol L' and [Ti] = 100 mmol L™'(a, b), or [Ba] = 200
mmol L=1 and [Ti] = 200 mmol L= (c), and heat treatment at 400 K, with corresponding particle

sizes.
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Figure S5-12. Evaluation of BaTiO3 crystal structures. XRD patterns of confined-BaTiO;

prepared under conditions [Ba] = 100 mmol L-' and [Ti] = 50 mmol L™, and heat treatment at

400 K, with corresponding particle sizes.
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Figure S5-13. Evaluation of BaTiOfg{:??/stal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 100 mmol L~" and [Ti] = 50 mmol L *(a, b), [Ba] = 100 mmol
L-" and [Ti] = 100 mmol L' (c), and [Ba] = 50 mmol L' and [Ti] = 50 mmol L= (d), and heat

treatment at 400 K, with corresponding particle sizes.
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Figure S5-14. Evaluation of BaTiO3 crystal structures. XRD patterns of confined-BaTiO;

prepared under conditions [Ba] = 20 mmol L' and [Ti] = 10 mmol L', and heat treatment at

400 K, with corresponding particle sizes.
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Figure S5-15. Evaluation of BaTiO3; crystal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 20 mmol L' and [Ti] = 10 mmol L', and heat treatment at

400 K, with corresponding particle sizes.
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Figure S5-16. Evaluation of BaTiO3; crystal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 1200 mmol L~" and [Ti] = 600 mmol L= (a) and after removal

of ACFs (b), and heat treatment at 400 K, with corresponding particle sizes.
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Figure S5-17. Evaluation of BaTiO3 crystal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 400 mmol L™' and [Ti] = 200 mmol L' (a) and after removal

of ACFs (b), and heat treatment at 400 K, with corresponding particle sizes.
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Figure S5-18. Evaluation of BaTiO; crystal structures. XRD patterns of confined-BaTiO;
prepared under conditions [Ba] = 100 mmol L=" and [Ti] = 50 mmol L-' (a) and after removal of

ACFs (b), and heat treatment at 400 K, with corresponding particle sizes.
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Figure S6. Evaluation of representative BaTiO; crystal structures. Experimental and simulated

XRD patterns are indicated by coloured and black curves, respectively.
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