Exploiting Na₂MnPO₄F as a high-capacity and well-reversible cathode material for Na-ion batteries

Xiaochen Lin, Xu Hou, Xiaobiao Wu, Sihui Wang, Ming Gao, Yong Yang*

State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China. E-mail: <u>yyang@xmu.edu.cn</u>

1. The ex-situ XPS measurements

Mn 3s level is known to exhibit multiplet splitting (ΔE_{3s}), which is an indicator for the Mn valence¹⁻⁴. Therefore, we utilize the *ex-situ* XPS measurements of Mn 3s to prove the existence of Mn²⁺ and study the variation trend of Mn valence during cycling.

The *ex-situ* XPS spectra and multiplet splitting in different charge/discharge states are shown in Fig. S1 and Table. S1.

Fig. S1 *Ex-situ* XPS spectra of different charge/discharge states: (a) pristine; (b) charge to 4.0 V; (c) charge to 4.5 V; (d) discharge to 3.6 V; (e) discharge to 3.0 V; (f) discharge to 1.0 V.

States	$\Delta E_{3s} / eV$
Pristine	6.32
C 4.0V	6.10
C 4.5V	5.72
D 3.6V	6.17
D 3.0V	6.23
D 1.0V	6.37

Table. S1 The multiplet splitting of Mn 3s at different charge/discharge states in XPS

The ΔE_{3s} of pristine sample is 6.32 eV, which is between the reported ΔE_{3s} values of Mn²⁺ in sulphides (6.2 eV)⁴ and spinel material (6.5 eV)¹⁻³. Owing to few reports about XPS of Mn 3s in polyanionic cathode material, we can roughly confirm the existence of divalent Mn in Na₂MnPO₄F material.

The *ex-situ* XPS results also show that ΔE_{3s} decrease from 6.32 eV to 5.72 eV when charged to 4.5V, corresponding to the change of Mn valence from Mn²⁺ to Mn³⁺. Then in the discharge process, the trend is opposite as the Mn valence turns back to Mn²⁺. Therefore, the changes of Mn valence during cycling can be qualitatively studied through *ex-situ* XPS.

2. The calculation of Na⁺ diffusion coefficient

The below formula we used to calculate Na^+ diffusion coefficient is one simplified formula. It applies to planar diffusion in a slab of homogeneous material with a linear dependency of $E-t^{1/2}$ and good equilibration during the relaxation period. According to equation (1) derived from Sand equation⁵, we can calculate the apparent chemical diffusion coefficient value.

$$\frac{dE}{dt^{1/2}} = \frac{2j}{C_V (\pi D)^{1/2}}$$
(1)

$$\frac{\Delta E_{P}}{\tau^{1/2}} = \frac{2I}{AC_{V}(\pi D)^{1/2}} \qquad \Delta E_{P} = \frac{2I\tau^{1/2}}{AC_{V}(\pi D)^{1/2}}$$

Where L is the ratio of active material volume to the surface area perpendicular to the current $(L=10^{-5} \text{ cm observed from the SEM images})$, and τ_P is the pulse duration ($\tau_P=1800 \text{ s}$). Combined the ΔE_{PULSE} values obtained from E-t^{1/2} plots with the ΔE_{RELAX} values obtained from E-t plots, we could calculate the simplified Na⁺ diffusion coefficient.

References

- 1 D. A. Shirley, *Phys. Scr.*, 1975, **11**, 117.
- 2 V. A. M. Brabers, F. M. van Setten and P. S. A. Knapen, J. Solid State Chem., 1983, 49, 93-98.
- 3 G. C. Allen, S. J. Harris, J. A. Jutson and J. M. Dyke, *Appl. Surf. Sci.*, 1989, **37**, 111-134.
- 4 V. Tsurkan, M. Demeter, B. Schneider, D. Hartmann and M. Neumann, *Solid State Commun.*, 2000, **114**, 149-154.
- 5 A. J. Bard and L. R. Faulkener, *Electrochemical Methods*, 2nd Edition edn., 2001.