Supporting information

Mussel-Inspired Polydopamine Modification of Supports for Facile Synthesis of Zeolite LTA Molecular Sieve Membranes

Chenfang Yuan, Qian Liu, Huifeng Chen, and Aisheng Huang

Institute of New Energy Technology, Ningbo Institute of Material Technology and Engineering, CAS, 1219 Zhongguan Road, 315201 Ningbo, P. R. China

Figure S1

Figure S1. Schematic diagram of experimental apparatus for pervaporation. (1) Water bath, (2) liquid tank, (3) circle pump, (4) permeation cell, (5) cold traps, (6) ball value, (7) vacuum pump.

Figure S2. Top view FESEM image of the zeolite LTA membrane at low magnification prepared on polydopamine modified Al₂O₃ disk.

Figure S3. XRD patterns of the Al_2O_3 support (a), zeolite LTA membrane prepared on polydopamine functionalized Al_2O_3 support (b), and zeolite LTA powder (c). (•): Al_2O_3 support, (not marked): zeolite LTA.

Figure S4. Top view (a) and cross-section FESEM images of the zeolite LTA membrane prepared on polydopamine functionalized α -Al₂O₃ tubes.

Figure S5. Top view FESEM images of the zeolite LTA membrane prepared on PDA-modified glass plate (a) and stainless steel disk (b).

Figure S6. Zeta potential of Al_2O_3 (A. Huang, et al, *Chem. Mater.* 2010, 22, 4353), PDA modified Al_2O_3 and zeolite LTA particles (A. Huang, et al, *Chem. Mater.* 2010, 22, 4353) suspended in water as function of pH.

Figure S7

Fig. S7. Top view (a) and cross-section (b) FESEM images of the zeolite FAU membrane prepared on PDA-modified Al₂O₃ disks.

For synthesis of the zeolite FAU membrane on the PDA-modified α -Al₂O₃ disk, a clear synthesis solution with the molar ratio of 70Na₂O : 1Al₂O₃ : 20SiO₂ : 2000H₂O, was prepared by mixing aluminate solution and silicate solution at room temperature according to the procedure reported elsewhere [A. Huang, N. Wang and J. Caro, *J. Membr. Sci.* 2012, **389**, 272]. The PDA-modified or non-modified α -Al₂O₃ disks were horizontally placed face down in a Teflon-lined stainless steel autoclave, and then the synthesis solution was poured into. After in-situ growth for 24 h at 348 K, the solution was decanted off and the membrane was washed with deionized water several times, and then dried in air at 383 K over night for characterization or permeation measurement.

Fig. S8. Top view (a) and cross-section (b) FESEM images of the zeolite MFI membrane prepared on PDA-modified Al₂O₃ disks.

For synthesis of the zeolite MFI membrane on the PDA-modified α -Al₂O₃ disk, a clear synthesis solution with the molar ratio of 1TBABr : 2NaOH : 10SiO₂ : 600H₂O, was prepared by mixing TBABr, NaOH and silicate solution in water at room temperature according to the procedure reported elsewhere with minor modification [H. Chen, C. Song and W. Yang, *Microporous Mesoporous Mater*. 2007, **102**, 249]. The PDA-treated or non-treated α -Al₂O₃ disks were horizontally placed face down in a Teflon-lined stainless steel autoclave, and then the synthesis solution was poured into. After in-situ growth for 48 h at 453 K, the solution was decanted off and the membrane was washed with deionized water several times, and then dried in air at 383 K over night for characterization or permeation measurement.

Table S1. Comparisons of the pervaporation properties of the as-synthesized zeoliteLTA membrane prepared in this study with literature data.

Supports	Seeding	Mixtures (A / B)	Concentration (A wt%)	T (K)	Flux (kg/ m ² h)	$lpha_{A/B}$	References
Mullite tube	Yes	H ₂ O/EtOH	10	348	2.08	42000	S 1
ZnO ₂ tube	No	H ₂ O/i-PrOH	10	343	0.5	5000	S2
α -Al ₂ O ₃ tube	Yes	H ₂ O/i-PrOH	5	343	1.67	10000	S3
α -Al ₂ O ₃ tube	No	H ₂ O/EtOH	5	318	0.23	8300	S4
α -Al ₂ O ₃ tube	No	H ₂ O/i-PrOH	5	343	1.02	9481	S5
α -Al ₂ O ₃ tube	No	H ₂ O/i-PrOH	5	343	1.49	3781	S6
α -Al ₂ O ₃ tube	Yes	H ₂ O/EtOH	5	393	4.3	5600	S7
		H ₂ O/i-PrOH			5.6	6000	
TiO ₂ coated stainless-steel	No	H ₂ O/EtOH	5	318	0.86	54000	S8
α -Al ₂ O ₃ tube	Yes	H ₂ O/EtOH	10	348	5.6	5000	S9
α -Al ₂ O ₃ tube	Yes	H ₂ O/EtOH	2.65	333	2.1	2140	S10
α -Al ₂ O ₃ tube	No	H ₂ O/i-PrOH	5	343	1.67	4700	S11
α -Al ₂ O ₃ tube	No	H ₂ O/EtOH	10	338	0.51	10000	S12
Polymer-zeolite CHFs	No	H ₂ O/EtOH	10	348	9.2	>10000	S13
α -Al ₂ O ₃ tube	Yes	H ₂ O/EtOH	10		2.6	>10000	S14
α -Al ₂ O ₃ tube	No	H ₂ O/EtOH	5	333	2.06	>10000	
				348	2.58	>10000	This study
				358	3.28	>10000	
				373	4.13	>10000	

References

- [S1] Kondo, M.; Komori, M.; Kita, H.; Okamoto, K. J. Membr. Sci. 1997, 133, 133.
- [S2] Jafar, J. J.; Budd, M. Microporous Mater. 1997, 12, 305.
- [S3] Huang, A.; Lin, Y.; Yang, W. J. Membr. Sci. 2004, 245, 41.

- [S4] Zah, J.; Krieg, H. M.; Breytenbach, J. C. J. Membr. Sci. 2006, 284, 276.
- [S5] Huang, A.; Yang, W. Microporous Mesoporous Mater. 2007, 102, 58.
- [S6] Huang, A.; Yang, W.; Liu, J. Sep. Purif. Technol. 2007, 56, 158.
- [S7] Kondo, M.; Yamamura, T.; Yukitake, T.; Matsuo, Y.; Kita, H.; Okamoto, K. Sep. Purif. Technol. 2003, 32, 191.
- [S8] van den Berg, A. W. C.; Gora, L.; Jansen, J. C.; Makkee, M.; Maschmeyer, Th. J. Membr. Sci. 2003, 224, 29.
- [S9] Sato, K.; Nakane, T. J. Membr. Sci. 2007, 301, 151.
- [S10] Shah, D.; Kissick, K.; Ghorpade, A.; Hannahb, R.; Bhattacharyya, D. J. Membr. Sci. 2000, 179, 185.
- [S11] Huang, A.; Yang, W. Sep. Purif. Technol. 2008, 61, 175.
- [S12] Li, Y.; Chen, H.; Liu, J.; Yang, W. J. Membr. Sci. 2006, 277, 230.
- [S13] Ge, Q.; Wang, Z.; Yan, Y. J. Am. Chem. Soc. 2009, 131, 17056.
- [S14] Yang, Z.; Liu, Y.; Yu, C.; Gu, X.; Xu, N. J. Membr. Sci. 2012, 392-393, 18.