Supplementary Information

Interactions between crystalline nanospheres: comparisons between molecular dynamics simulations and continuum models

Weifu Sun,^{a,*} Yuchao Li,^{b,*} Wen Xu^c, Yiu-Wing Mai^a

^a Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, New South Wales 2006, Australia

^bDepartment of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China

^cCollege of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China

1. Effect of temperature on interparticle LJ potentials and mechanical contact forces

Fig. S1-a shows that the LJ potential results obtained at different temperatures from 100 to 400 K are almost identical so that the effect of temperature can be ignored. Likewise, the mechanical force results in the same temperature range are almost identical as shown in Fig. S1-b indicating that they can also be considered independent of temperature.

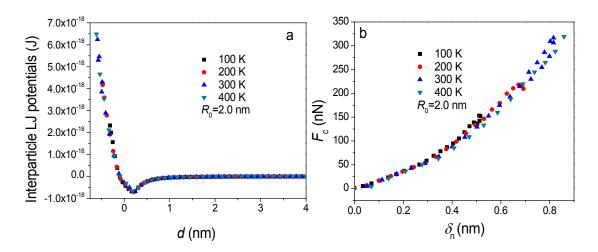


Figure S1. (a) Interparticle LJ potentials as a function of surface separation d and (b) mechanical contact forces F_c as a function of normal displacement δ_n between two silicon carbide nanospheres 2.0 nm radius obtained in the approach process at an initial relative velocity of 500 m/s under different temperatures using a NVT ensemble and Berendsen thermostat method.

2. Supplementary nomenclature

Symbol	
A	Hamaker constant
С	vdW attraction interaction parameter
3	potential well depth
σ	collision diameter of atom
$E_{ m LJ}$	interparticle Lennard-Jones potential
R_0	cut-off radius
R	defined particle radius $R = \overline{R}$
\overline{R}	averaged radial distance of surface atoms from particle centre
R ^{core}	radius of particle core
rms	surface roughness
δ	effective surface thickness
$\delta_{ m Max}$	maximum surface thickness
$\delta_{ m n}$	normal displacement
Δd	part beyond defined particle radius
rms/R	relative surface roughness
d	shortest surface separation of two particles
d_{\min}	minimum surface separation

Table S1 Nomenclature for symbols used in this work

v	velocity or volume of atom
Y	yield strength
C_0	characteristic velocity of a material
ρ	material density or number density of atoms
λ	ratio of particle radii of two particles
$ ho_H$	number density of atoms determined in the Hamaker approach
ρ_T	true number density of atoms
k _ρ	$k_{\rm p} = \rho_T / \rho_H$
F _n	total normal force
\mathbf{F}_{vdW}	van der Waals attraction force
F _{Born}	short range Born repulsion force
F _c	mechanical contact force
\mathbf{F}_{t}	tangential force
\mathbf{F}_{Y}	force along the Y-axis
\mathbf{F}_{Z}	force along the Z-axis
v	Poisson ratio
Z ₀	equilibrium separation
m	mass
δ_n^*	maximum normal displacement