RSC. Adv.

Electronic Supplementary Information

Mononuclear rhenium(I) complexes incorporating 2-(Arylazo)phenyl benzyl thioethers: synthesis, structure, spectral, DFT and TDDFT study

Pallab Mondal, Rupa Sarkar, Amar Hens, and Kajal Krishna Rajak*

*Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India. E-mail: kajalrajak@hotmail.com // kkrajak@chemistry.jdvu.ac.in

IR and NMR spectra

The IR spectra of all the complexes were recorded as a KBr disc. The complexes display three metal carbonyl vibrations in the region 1904–2043 cm⁻¹. These vibrations are consistent with the presence of *fac*-[Re(CO)₃]⁺ core in the complex with pseudo $C_{3\nu}$ symmetry. The N=N stretches are observed ~ 1455 cm⁻¹. The Re–Cl stretching frequency for all the complexes is observed ~ 305 cm⁻¹. The frequencies calculated by DFT method using the gas-phase optimized structure predict three carbonyl vibrations with a_1 and e symmetries¹ for all the complexes. The experimental and calculated IR spectral data are given in Experimental section.

The complexes are diamagnetic and display well resolved ¹H and ¹³C NMR spectra in CDCl₃ solution at room temperature. The assignment of NMR spectra is based on intensity and spin-spin splitting structure of Re(I) complexes.

In all the complexes the C(18)–H proton is observed as a doublet ~ 7.8 ppm. The aromatic protons span in the range (6.95–7.94) ppm. The resonance of CH₂ group attached to the coordinated sulfur atom is observed as singlet ~ 4.25 ppm.

Fig. S1 Linear correlation between the experimental and calculated ${}^{13}C$ NMR chemical shifts of [Re(L¹)(CO)₃Cl], **1**.

The complexes show three metal carbonyl resonances in the region 189–199 ppm which corroborates with the presence of pseudo $C_{3\nu}$ fac-[Re(CO)₃]⁺ core.² The closely spaced

resonances (~ 199 and ~ 198 ppm) are assigned as equatorial carbonyls whereas the resonance ~ 190 ppm is due to the axial carbonyl group. The differences in chemical shift values can be attributed to different π accepting property of azo nitrogen, chlorine and sulfur atom. The ¹H and ¹³C NMR spectral chemical shifts were calculated by GIAO-DFT method and the calculated chemical shifts are in good agreement with the experimental data. The correlation between the experimental and calculated ¹³C NMR chemical shift of complex **1** is shown in Fig. S1. The experimental and calculated ¹H and ¹³C NMR data are given in the Experimental section.

Table S1 Energies (eV) and composition (%) of frontier molecular orbitals of the complex $[Re(L^2)(CO)_3Cl]$, **2** at ground state (S₀)

Orbital	Energy	Contribution (%)		6)	Main bond type	
	(eV)	Re	CO	L ²	Cl	
LUMO + 5	-1.011	1.0	23.5	74.1	1.4	$\pi^{*}(CO) + \pi^{*}(L^{2})$
LUMO + 4	-1.098	4.1	6.4	88.0	1.5	$\pi^*(L^2)$
LUMO + 3	-1.483	8.9	28.9	61.7	0.5	$\pi^{*}(CO) + \pi^{*}(L^{2})$
LUMO + 2	-1.674	23.7	55.5	20.3	0.5	$p(Re) + \pi^*(CO) + \pi^*(L^2)$
LUMO + 1	-1.779	22.1	35.6	40.0	2.2	$p(Re) + \pi^*(CO) + \pi^*(L^2)$
LUMO	-3.591	1.3	2.9	94.1	1.6	$\pi^*(L^2)$
HOMO	-6.654	33.1	15.8	28.1	23.0	$d(Re) + \pi(CO) + \pi(L^2) + p(Cl)$
HOMO – 1	-6.770	42.7	19.6	10.9	26.8	$d(Re) + \pi(CO) + \pi(L^2) + p(Cl)$
HOMO – 2	-7.096	21.2	9.6	55.2	14.0	$d(Re) + \pi(L^2) + p(Cl)$
HOMO – 3	-7.176	10.5	2.5	73.7	13.3	$d(Re) + \pi(L^2) + p(Cl)$
HOMO – 4	-7.217	45.0	19.7	34.0	1.3	$d(Re) + \pi(CO) + \pi(L^2)$
HOMO – 5	-7.313	0.9	0.4	98.4	0.3	$\pi(L^2)$

Orbital	Energy	Contribution (%)			%)	Main bond type
	(eV)	Re	CO	L ³	Cl	
LUMO + 5	-1.280	2.4	10.8	86.5	0.2	$\pi^*(CO) + \pi^*(L^3)$
LUMO + 4	-1.535	9.0	28.8	61.8	0.4	$\pi^{*}(CO) + \pi^{*}(L^{3})$
LUMO + 3	-1.705	23.1	56.5	20.3	0.1	$p(Re) + \pi^*(CO) + \pi^*(L^3)$
LUMO + 2	-1.841	20.9	33.5	43.4	2.2	$p(Re) + \pi^*(CO) + \pi^*(L^3)$
LUMO + 1	-3.406	1.4	1.9	96.3	0.4	$\pi^{*}(L^{3})$
LUMO	-4.005	1.1	2.3	96.2	0.4	$\pi^{*}(L^{3})$
HOMO	-6.794	44.1	20.2	7.6	28.1	$d(Re) + \pi(CO) + p(Cl)$
HOMO – 1	-6.853	40.7	18.5	11.0	29.7	$d(Re) + \pi(CO) + \pi(L^3) + p(Cl)$
HOMO – 2	-7.172	7.6	2.9	83.3	6.1	$\pi(L^3)$
HOMO – 3	-7.279	44.4	20.0	34.6	1.0	$d(Re) + \pi(CO) + \pi(L^3)$
HOMO – 4	-7.331	9.1	4.0	86.9	0.0	$\pi(L^3)$
HOMO – 5	-7.566	9.0	1.1	86.9	3.0	$\pi(L^3)$

Table S2 Energies (eV) and composition (%) of frontier molecular orbitals of the complex $[Re(L^3)(CO)_3Cl]$, **3** at ground state (S_0)

Fig. S2 Optimized molecular structure of $[\text{Re}(L^1)(\text{CO})_3\text{Cl}]$, **1**; $[\text{Re}(L^2)(\text{CO})_3\text{Cl}]$, **2** and $[\text{Re}(L^3)(\text{CO})_3\text{Cl}]$, **3** at lowest lying triplet excited state (T₁) (Re: Pink, Cl: Green, N: Blue, O: Red, S: Yellow, C: Grey). Hydrogen atoms are omitted for clarity.

Table S3 Main calculated optical transition for complex $[Re(L^2)(CO)_3Cl]$, **2** with composition in terms of molecular orbital contribution of the transition, vertical excitation energies and oscillator strength in dichloromethane

Electronic	Composition	Excitation	Oscillator	CI ^a	Assign	λ_{exp}
Transitions		energy	strength			(nm)
			(f)			
$S_0 \rightarrow S_4$	$HOMO - 4 \rightarrow LUMO$	2.9236 eV	0.0846	0.50844	MLCT/ILCT	416
	$HOMO - 3 \rightarrow LUMO$	(424 nm)		-0.41666	MLCT/ILCT	
	$HOMO - 2 \rightarrow LUMO$			-0.22208	MLCT/ILCT	
$S_0 \rightarrow S_{10}$	$HOMO - 9 \rightarrow LUMO$	3.7121 eV	0.0550	0.57855	MLCT/ILCT	314
	$HOMO - 8 \rightarrow LUMO$	(334 nm)		0.16174	ILCT	
	$HOMO - 7 \rightarrow LUMO$			-0.29772	ILCT	
	$HOMO - 6 \rightarrow LUMO$			0.12068	ILCT	
$S_0 \rightarrow S_{34}$	$HOMO - 4 \rightarrow LUMO + 2$	5.1000 eV	0.0565	0.12325	MLCT/ILCT	237
	$HOMO - 3 \rightarrow LUMO + 2$	(243 nm)		0.11064	MLCT/ILCT	
	$HOMO - 2 \rightarrow LUMO + 2$			0.25157	MLCT/ILCT	
	$HOMO - 1 \rightarrow LUMO + 5$			-0.21136	MLCT/ILCT	

^{*a*}Coefficient of the wave function for each excitations. The CI coefficients are in absolute values.

Table S4 Main calculated optical transition for complex [$Re(L^3)(CO)_3Cl$], **3** with composition in terms of molecular orbital contribution of the transition, vertical excitation energies and oscillator strength in dichloromethane

Electronic	Composition	Excitation	Oscillator	CI ^a	Assign	λ_{exp}
Transitions		energy	strength			(nm)
			(f)			
$S_0 \rightarrow S_2$	$HOMO - 1 \rightarrow LUMO$	2.2253 eV	0.0598	0.65235	MLCT/ILCT	535
	$HOMO \rightarrow LUMO$	(557 nm)		0.20881	MLCT/ILCT	
$S_0 \rightarrow S_{19}$	$HOMO - 3 \rightarrow LUMO + 3$	3.9725 eV	0.0094	0.10961	MLCT/ILCT	307
	$HOMO - 1 \rightarrow LUMO + 3$	(312 nm)		-0.12324	MLCT/ILCT	
	$HOMO \rightarrow LUMO + 2$			0.60149	MLCT/ILCT	
	$HOMO \rightarrow LUMO + 4$			0.26046	MLCT/ILCT	
$S_0 \rightarrow S_{38}$	$HOMO - 3 \rightarrow LUMO + 2$	4.8449 eV	0.0947	-0.30755	MLCT/ILCT	261
	$HOMO - 2 \rightarrow LUMO + 2$	(256 nm)		0.57849	LMCT/ILCT	
	$HOMO - 2 \rightarrow LUMO + 4$			-0.12810	ILCT	

^aCoefficient of the wave function for each excitations. The CI coefficients are in absolute values.

References

- 1 R. W. Balk, D. J. Stufkens and A. Oskam, J. Chem. Soc., Dalton Trans., 1981, 1124-1133.
- 2 F. Cloran, I. Carmichael and A. S. Serianni, J. Am. Chem. Soc., 2001, 123, 4781-4791.