Silver catalyzed decarboxylative acylation of pyridine *N*-oxides using α-oxocarboxylic acids

Rajendran Suresh,^{*a,b*} Rajendran Senthil Kumaran,^{*b*} Vajiram Senthilkumar^{*b*} and Shanmugam Muthusubramanian,^{**a*}

^aDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625 021, India.

^bSyngene International Limited, Biocon, Bangalore – 560 099, India.

muthumanian2001@yahoo.com

Table of Contents:	page
Experimental procedures and analytical data	3
Screening table	6
¹ H NMR, ¹³ C NMR and mass spectra of compound 3a	7
¹ H NMR, ¹³ C NMR and mass spectra of compound 3b	10
¹ H NMR, ¹³ C NMR and mass spectra of compound 3c	13
¹ H NMR and mass spectra of compound 3d	16
¹ H NMR, ¹³ C NMR and mass spectra of compound 3e	18
¹ H NMR, ¹³ C NMR and mass spectra of compound 3f	21
¹ H NMR, ¹³ C NMR and mass spectra of compound 3g	24
¹ H NMR, ¹³ C NMR and mass spectra of compound 3h	27
¹ H NMR, ¹³ C NMR and mass spectra of compound 3i	30
¹ H NMR, ¹³ C NMR and mass spectra of compound 3j	33
¹ H NMR, ¹³ C NMR and mass spectra of compound 3k	36
¹ H NMR, ¹³ C NMR and mass spectra of compound 3I	39
¹ H NMR, ¹³ C NMR and mass spectra of compound 3m	42
¹ H NMR, ¹³ C NMR and mass spectra of compound 3n	45
¹ H-NMR, ¹³ C-NMR and mass spectra of compound 3o	48
¹ H NMR, ¹³ C NMR and mass spectra of compound 3p	51
¹ H NMR, ¹³ C NMR and mass spectra of compound 3p'	54
¹ H NMR, ¹³ C NMR and mass spectra of compound 3q and	57
3q'	
¹ H NMR, ¹³ C NMR spectra of compound 3r	60
¹ H NMR, ¹³ C NMR and mass spectra of compound 3r'	62
¹ H NMR, ¹³ C NMR and mass spectra of compound 3s	65

¹ H NMR, ¹³ C NMR spectra of compound 3t	68
¹ H NMR, ¹³ C NMR and mass spectra of compound 3t'	70
¹ H NMR and mass spectra of compound 4	73

General procedure for the synthesis of (substituted benzoyl)pyridine 1-oxide (3). The mixture of α -keto carboxylic acid 2 (0.92 mmol), substituted pyridine N-oxide 1 (0.46 mmol), silvercarbonate (10 mol %) and K₂S₂O₈ (1.38 mmol) in DCM: H₂O (3:1, 2 mL) were stirred at 50 °C for 12 h. The reaction mixture was filtered through celite pad, washed with dichloromethane. The organic layer was washed with water and brine, dried over sodium sulfate, and concentrated in vacuum. Crude product was purified by flash column chromatography using 70-80 % ethylacetate in hexane mixture as the solvent to get derivative 3.

- 2-(4-Chlorobenzoyl)-4-methylpyridine 1-oxide (3a). Isolated as pale yellow solid; mp 174-175 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.43 (s, 3H), 7.23-7.25 (m, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 8.13 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.4, 126.3, 128.0, 129.2, 130.6, 133.5, 137.8, 139.3, 140.6, 146.0, 188.3; UPLC (M+1) 248; Anal. Calcd for: C₁₃H₁₀ClNO₂: C, 63.04; H, 4.07; N, 5.66 %. Found C, 63.10; H, 4.03; N, 5.70 %.
- 4-Chloro-2-(4-chlorobenzoyl)pyridine 1-oxide (3b). Isolated as offwhite solid; mp 191-192 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.39 - 7.41 (m, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 8.15 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 125.9, 127.5, 129.3, 129.5, 130.6, 132.0, 133.0, 140.7, 141.0, 186.7; UPLC (M+1) 269; Anal. Calcd for: C₁₂H₇Cl₂NO₂: C, 53.76; H, 2.63; N, 5.22 %. Found C, 53.70; H, 2.67; N, 5.17 %.
- 2-(4-Chlorobenzoyl)-4-methoxypyridine 1-oxide (3c). Isolated as offwhite solid; mp 124-125 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.91 (s, 3H), 6.93-6.97 (m, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 8.14 (d, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 56.4, 110.4, 113.7, 129.2, 130.7, 133.3, 140.7,* 140.9, 156.0, 187.7.; UPLC (M+1) 264; Anal. Calcd for: C₁₃H₁₀ClNO₃: C, 59.22; H, 3.82; N, 5.31 %. Found C, 59.26; H, 3.85; N, 5.27 %.) * Two carbons merged here.
- 4. **4-Methyl-2-(4-(trifluoromethyl)benzoyl)pyridine 1-oxide (3d).** Isolated as offwhite solid; mp 156-157 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.31 (m, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 8.15 (d, *J* = 5.6 Hz, 1H); The solubility in NMR solvents is so poor and an intense ¹³C NMR spectrum could not be recorded; UPLC (M+1) 282; Anal. Calcd for: C₁₄H₁₀F₃NO₂: C, 59.79; H, 3.58; N, 4.98 %. Found C, 59.71; H, 3.64; N, 5.03 %.
- 4-Chloro-2-(4-(trifluoromethyl)benzoyl)pyridine 1-oxide (3e). Isolated as pale yellow solid; mp 134-135 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.47 (m, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.93 (d, *J* = 8.0 Hz, 2H), 8.16 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 29.7, 123.3, 125.9, 126.0, 127.8, 129.3, 132.2, 135.2, 137.4, 140.8, 187.2; UPLC (M+1) 302; Anal. Calcd for: C₁₃H₇ClF₃NO₂: C, 51.76; H, 2.34; N, 4.64 %. Found C, 51.82; H, 2.38; N, 4.60 %.
- 4-Chloro-2-(3-methoxybenzoyl)pyridine 1-oxide (3f). Isolated as pale brown solid; mp 145-147 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.86 (s, 3H), 7.15-7.45 (m, 6H), 8.16 (t, J = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 112.7, 121.2, 122.2, 125.5, 126.4, 127.0, 129.9, 131.8, 135.8, 140.7, 160.0, 187.6; UPLC (M+1) 264; Anal. Calcd for: C₁₃H₁₀ClNO₃: C, 59.22; H, 3.82; N, 5.31 %. Found C, 59.17; H, 3.88; N, 5.38 %.
- 7. 4-Chloro-2-(2-methylbenzoyl)pyridine 1-oxide (3g). Isolated as offwhite solid; mp 169-171 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.66 (s, 3H), 7.22-7.48 (m, 6H), 8.13 (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 125.7, 126.0, 127.1, 130.6, 131.8,

132.4, 133.0, 134.2, 140.5, 140.8, 148.6, 189.5; UPLC (M+1) 248; Anal. Calcd for: $C_{13}H_{10}CINO_2$: C, 63.04; H, 4.07; N, 5.66 %. Found C, 63.07; H, 4.08; N, 5.71 %.

- 4-Cyano-2-(2-methylbenzoyl)pyridine 1-oxide (3h). Isolated as offwhite solid; mp 194-196 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.65 (s, 3H), 7.25 (t, *J* = 8.0 Hz, 1H), 7.32-7.37 (m, 2H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.60 (dd, *J* = 7.2, 2.8 Hz, 1H), 7.71 (d, *J* = 2.8 Hz, 1H), 8.20 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 107.8, 115.4, 126.0, 128.7, 129.2, 130.4, 132.5, 133.4, 133.8, 140.6, 141.1, 148.9, 188.8; UPLC (M+1) 239; Anal. Calcd for: C₁₄H₁₀N₂O₂: C, 70.58; H, 4.23; N, 11.76 %. Found C, 70.51; H, 4.28; N, 11.71 %.
- 4-Chloro-2-propionylpyridine 1-oxide (3i). Isolated as pale yellow solid; mp 84-86 °C;
 ¹H NMR (400 MHz, CDCl₃): δ 1.21 (t, J = 7.2 Hz, 3H), 3.23 (q, J = 7.2 Hz, 2H), 7.32-7.34 (m, 1H), 7.66 (s, 1H), 8.12 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 7.9, 36.4, 126.8, 127.9, 131.8, 141.5, 147.0, 197.2; UPLC (M+1) 186; Anal. Calcd for: C₈H₈ClNO₂: C, 51.77; H, 4.34; N, 7.55 %. Found C, 51.73; H, 4.30; N, 7.60 %.
- 2-Benzoyl-4-methylpyridine 1-oxide (3j). Isolated as offwhite solid; mp 144-146 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.43 (s, 3H), 7.22-7.23 (m, 2H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 2H), 8.15 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.4, 126.0, 127.7, 128.8, 129.3, 134.2, 135.0, 137.8, 139.3, 146.4, 189.4; UPLC (M+1) 214; Anal. Calcd for: C₁₃H₁₁NO₂: C, 73.23; H, 5.20; N, 6.57 %. Found C, 73.29; H, 5.24; N, 6.62 %.
- 2-Benzoyl-4-chloropyridine 1-oxide (3k). Isolated as offwhite solid; mp 120-122 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.39 (m, 2H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 2H), 7.84 (d, *J* = 7.6 Hz, 2H), 8.16 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 125.7, 127.1, 128.9,* 129.2, 131.8, 134.4, 134.5, 140.7, 187.8; UPLC (M+1) 234; Anal. Calcd for: C₁₂H₈ClNO₂: C, 61.69; H, 3.45; N, 5.99 %. Found C, 61.65; H, 3.48; N, 6.05 %. * Two carbons merged here.
- 2-Benzoyl-4-methoxypyridine 1-oxide (3l). Isolated as offwhite solid; mp 94-95 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.99 (s, 3H), 6.91 6.96 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 2H), 8.14 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 56.3, 110.1, 113.4, 128.8, 129.3, 134.2, 134.8, 138.2, 140.7, 157.7, 188.7; UPLC (M+1) 230; Anal. Calcd for: C₁₃H₁₁NO₃: C, 68.11; H, 4.84; N, 6.11 %. Found C, 68.15; H, 4.79; N, 6.17 %.
- 13. 2-Benzoyl-4-cyanopyridine 1-oxide (3m). Isolated as pale yellow solid; mp 170-171 °C;
 ¹H NMR (400 MHz, CDCl₃): δ 7.51 (t, J = 7.2 Hz, 2H), 7.63-7.68 (m, 3H), 7.80 (d, J = 7.2 Hz, 2H), 8.27 (d, J = 6.8 Hz, 1H);
 ¹³C NMR (100 MHz, CDCl₃) δ 107.9, 115.3, 128.6, 129.1, 129.2, 129.3, 134.3, 134.8, 141.0, 148.1, 187.3; UPLC (M+1) 225; Anal. Calcd for: C₁₃H₈N₂O₂: C, 69.64; H, 3.60; N, 12.49 %. Found C, 69.73; H, 3.67; N, 12.41 %.
- 14. 2-Benzoylquinoline 1-oxide (3n). Isolated as offwhite solid; mp 155-157 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.50 (m, 3H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.74 (t, *J* = 7.2 Hz, 1H), 7.81-7.84 (m, 4H), 7.96 (d, *J* = 7.6 Hz, 1H), 8.73 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.8, 120.4, 125.8, 128.3, 128.9, 129.2, 129.6, 130.7, 131.0, 134.1, 135.2, 141.6, 142.8, 190.3; UPLC (M+1) 250; Anal. Calcd for: C₁₆H₁₁NO₂: C, 77.10; H, 4.45; N, 5.62 %. Found C, 77.06; H, 4.41; N, 5.68 %.
- 15. **2-(4-Chlorobenzoyl)quinoline 1-oxide (30).** Isolated as offwhite solid; mp 137-138 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.47 (m, 3H), 7.74-7.90 (m, 5H), 7.97 (d, *J* = 7.6 Hz,

1H), 8.72 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.8, 120.5, 126.0, 128.3, 129.3, 129.8, 130.5, 130.8, 131.2, 133.7, 140.5, 141.6, 142.3, 189.1; UPLC (M+1) 284; Anal. Calcd for: C₁₆H₁₀ClNO₂: C, 67.74; H, 3.55; N, 4.94 %. Found C, 67.69; H, 3.59; N, 4.90 %.

- 16. 2-Benzoyl-6-methylpyridine 1-oxide (3p). Isolated as offwhite solid; mp 111-113 °C;
 ¹H NMR (400 MHz, CDCl₃): δ 2.56 (s, 3H), 7.28-7.35 (m, 2H), 7.42 (dd, *J* = 7.0, 2.4 Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 2H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 17.4, 122.9, 125.3, 127.3, 128.8, 129.1, 133.9, 135.4, 147.0, 149.9, 189.7; UPLC (M+1) 214; Anal. Calcd for: C₁₃H₁₁NO₂: C, 73.23; H, 5.20; N, 6.57 %. Found C, 73.26; H, 5.23; N, 6.60 %.
- 17. 4-Benzoyl-2-methylpyridine 1-oxide (3p'). Isolated as offwhite solid; mp 120-121 °C;
 ¹H NMR (400 MHz, CDCl₃): δ 2.56 (s, 3H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.59 (d, *J* = 4.8 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.73 (s, 1H), 8.34 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.8, 124.3, 127.0, 128.7, 129.6, 132.6, 133.2, 136.3, 139.3, 149.3, 192.6; UPLC (M+1) 214; Anal. Calcd for: C₁₃H₁₁NO₂: C, 73.23; H, 5.20; N, 6.57 %. Found C, 73.19; H, 5.18; N, 6.51 %.
- 18. 2-Benzoyl-5-carboxypyridine 1-oxide (3r). Isolated as pale yellow solid; mp 148-149
 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.54 (t, J = 7.2 Hz, 2H), 7.68 (t, J = 7.2 Hz, 1H), 7.94 (d, J = 7.2 Hz, 2H), 8.06 (d, J = 8.0 Hz, 1H), 8.50 (dd, J = 8.0, 1.6 Hz, 1H), 9.15 (d, J = 1.6 Hz, 1H), 13.8 (br s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 124.5, 128.8, 129.0, 131.0, 133.8, 136.0, 138.9, 149.6, 157.8, 166.1, 193.4; UPLC (M+1) 244; Anal. Calcd for: C₁₃H₉NO₄: C, 64.20; H, 3.73; N, 5.76 %. Found C, 64.27; H, 3.67; N, 5.72 %.
- 2,4-Dibenzoyl-5-carboxypyridine 1-oxide (3r'). Isolated as pale brown solid; mp 189-190 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.53-7.60 (m, 4H), 7.68-7.80 (m, 4H), 8.01 (s, 1H), 8.02 (d, *J* = 7.6 Hz, 2H), 9.25 (s, 1H), 13.9 (br s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 122.0, 126.8, 128.8, 129.3, 129.6, 131.2, 134.1, 134.4, 135.7, 135.9, 150.2, 150.4, 157.9, 165.6, 192.9, 194.5; UPLC (M+1) 348; Anal. Calcd for: C₂₀H₁₃NO₅: C, 69.16; H, 3.77; N, 4.03 %. Found C, 69.20; H, 3.81; N, 3.98 %.
- 4-Benzoyl-2,6-dimethylpyridine 1-oxide (3s). Isolated as offwhite solid; mp 215-216
 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 2.41 (s, 6H), 7.55-7.60 (m, 2H), 7.67-7.70 (m, 3H), 7.75-7.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.4, 124.4, 128.6, 129.6, 131.7, 133.0, 136.5, 149.2, 193.2; UPLC (M+1) 228; Anal. Calcd for: C₁₄H₁₃NO₂: C, 73.99; H, 5.77; N, 6.16 %. Found C, 74.03; H, 5.72; N, 6.22 %.
- 21. 2-Benzoylpyridine 1-oxide (3t). Isolated as pale brown viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.49 (m, 5H), 7.61 (t, J = 7.6 Hz, 1H), 7.83 (d, J = 7.2 Hz, 2H), 8.27 (bd, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 125.6, 125.9, 126.9, 128.8, 128.9, 129.3, 134.2, 135.0, 140.1, 189.3; UPLC (M+1) 200; Anal. Calcd for: C₁₂H₉NO₂: C, 72.35; H, 4.55; N, 7.03 %. Found C, 72.31; H, 4.62; N, 7.00 %.
- 22. 6,6'-Dibenzoyl-3,3'-bipyridine 1,1'-dioxide (3t'). Isolated as offwhite solid; mp 161-162
 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.58 (t, *J* = 7.6 Hz, 4H), 7.73 (t, *J* = 7.6 Hz, 2H), 7.80 (d, *J* = 7.6 Hz, 4H), 7.88 (d, *J* = 8.0 Hz, 2H), 8.02 (d, *J* = 8.0 Hz, 2H), 8.92 (s, 2H);
 ¹³C NMR (100 MHz, DMSO-d₆) δ 125.2, 126.0, 129.4, 129.5, 134.8, 135.3, 138.5,* 146.3, 189.8; UPLC (M+1) 397; Anal. Calcd for: C₂₄H₁₆N₂O₄: C, 72.72; H, 4.07; N, 7.07 %. Found C, 72.63; H, 4.02; N, 7.02 %. * Two carbons merged here.

	$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$					
Entry	Catalyst	Oxidant	Solvent	Tem	Yiel	
	(10 mol %)	(2eq)		р	d of	
				°C	3a (%) ^[a]	
1	Cu(OAc) ₂	TBHP	DMF	100	28	
2	$Cu(OAc)_2$	Ag ₂ O	DMF	100	45	
3	CuSO ₄ .5H ₂ O	TBHP	DMF	100	28	
4	CuSO ₄ .5H ₂ O	$K_2S_2O_8$	DMF	100	32	
5	FeSO ₄ .7H ₂ O	$K_2S_2O_8$	DCM/H ₂ O	50	40	
6	Pd(OAc) ₂	$K_2S_2O_8$	DMSO	80	38	
7	Mn(OAc) ₃	-	HOAc	80	25	
8	-	CAN	CH ₃ CN	80	-	
9	AgOAc	$K_2S_2O_8$	DCM/H ₂ O	50	22	
10	AgNO ₃	TBHP	DCM/H ₂ O	50	41	
11	AgNO ₃	NH ₄ S ₂ O ₈	DCM/H ₂ O	50	53	
12	AgNO ₃	$K_2S_2O_8$	DCM/H ₂ O	50	59	
13 ^b	Ag ₂ CO ₃	$K_2S_2O_8$	DCM/H ₂ O	50	65	
14 ^c	Ag ₂ CO ₃	$K_2S_2O_8$	DCM/H ₂ O	50	81	
15	Ag ₂ CO ₃	O ₂	DCM/H ₂ O	50	16	
16	Ag ₂ CO ₃	Oxone	DCM/H ₂ O	50	11	
^a Isolated yield; ^b Reaction condition: heteroarene <i>N</i> -oxide (0.46 mmol), acid (0.69 mmol), catalyst (10 mol%), oxidant (0.92 mmol) in DCM:water mixture (2 mL, 3:1), 50 °C, 12 h; ^c Reaction condition: 0.92 mmol of acid and 1.38 mmol of oxidant used.						

Table Screening impact on reagents and solvents

Fig 1. ¹H-NMR spectrum of **3a**

Fig 2. ¹³C-NMR spectrum of **3a**

Fig 3. Mass spectrum of **3a**

Fig 4. ¹H-NMR spectrum of **3b**

Fig 5. ¹³C-NMR spectrum of **3b**

Fig 6. Mass spectrum of **3b**

Fig 7. ¹H-NMR spectrum of **3c**

Fig 9. Mass spectrum of **3c**

Fig 10. ¹H-NMR spectrum of **3d**

Fig 11. Mass spectrum of 3d

Fig 12. ¹H-NMR spectrum of **3e**

Fig 13. ¹³C-NMR spectrum of **3e**

Fig 14. Mass spectrum of **3e**

Fig 16. ¹³C-NMR spectrum of **3f**

Fig 17. Mass spectrum of **3f**

Fig 18. ¹H-NMR spectrum of **3**g

Fig 20. Mass spectrum of 3g

Fig 21. ¹H-NMR spectrum of **3h**

Fig 22. ¹³C-NMR spectrum of **3h**

Fig 23. Mass spectrum of **3h**

Fig 24. ¹H-NMR spectrum of **3i**

Fig 25. ¹³C-NMR spectrum of **3i**

Fig 26. Mass spectrum of **3i**

Fig 27. ¹H-NMR spectrum of **3**j

Fig 29. Mass spectrum of **3**j

Fig 30. ¹H-NMR spectrum of **3**k

Fig 32. Mass spectrum of **3k**

Fig 33. ¹H-NMR spectrum of **3**I

Fig 34. ¹³C-NMR spectrum of **3**I

Fig 35. Mass spectrum of **3**

Fig 36. ¹H-NMR spectrum of **3m**

Fig 37. ¹³C-NMR spectrum of **3m**

Fig 38. Mass spectrum of **3m**

Fig 39. ¹H-NMR spectrum of **3n**

Fig 40. ¹³C-NMR spectrum of **3n**

Fig 41. Mass spectrum of **3n**

Fig 42. ¹H-NMR spectrum of **30**

Fig 44. Mass spectrum of **30**

Fig 45. ¹H-NMR spectrum of **3p**

Fig 46. ¹³C-NMR spectrum of **3p**

Fig 47. Mass spectrum of **3p**

Fig 48. ¹H-NMR spectrum of **3p**'

Fig 50. Mass spectrum of **3p**'

Fig 51. ¹H-NMR spectrum of **3q & 3q'**

Fig 53. Mass spectrum of **3q & 3q'**

Fig 54. ¹H-NMR spectrum of **3**r

Fig 55. ¹³C-NMR spectrum of **3r**

Fig 56. ¹H-NMR spectrum of **3r**'

Fig 58. Mass spectrum of **3r'**

Fig 59. ¹H-NMR spectrum of **3s**

Fig 60. ¹³C-NMR spectrum of **3s**

Fig 61. Mass spectrum of **3s**

Fig 62. ¹H-NMR spectrum of **3**t

Fig 63. ¹³C-NMR spectrum of **3t**

Fig 64. ¹H-NMR spectrum of **3t'**

Fig 65. ¹³C-NMR spectrum of **3t**'

Fig 66. Mass spectrum of **3t'**

Fig 67. ¹H-NMR spectrum of 4

Fig 68. Mass spectrum of 4