Supporting Information for

A DFT-D Study on the Electrochromic Mechanism of Ruthenium

Sulfoxide Complexes

Huifang Li*, Lisheng Zhang, Hui Lin, Xiaolin Fan*

Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, R. R. China.

Table of Contents

Benchmark Calculation Details	S2
 MOs and Spin Density Distributions and Reference 	S3
Table S1: Benchmark calculation results	S5
• Table S2: MOs energies and IP/EA results	S5
Table S3: MOs and Spin density distributions	S5
• Table S4: TD-DFT results	S 6
• Table S5: Structure and energies of <i>S</i> -[Ru(bpy)(tpy)(dmso)] ²⁺	S 7
• Table S6: Structure and energies of η^2 -[Ru(bpy)(tpy)(dmso)] ²⁺	S9
• Table S7: Structure and energies of <i>O</i> -[Ru(bpy)(tpy)(dmso)] ²⁺	S11
• Table S8: Structure and energies of <i>S</i> -[Ru(bpy)(tpy)(dmso)] ³⁺	S13
• Table S9: Structure and energies of η^2 -[Ru(bpy)(tpy)(dmso)] ³⁺	S15
• Table S10: Structure and energies of <i>O</i> -[Ru(bpy)(tpy)(dmso)] ³⁺	S17
• Table S11: Structure and energies of <i>S</i> -[Ru(bpy)(tpy)(dmso)] ⁺	S19
• Table S12: Structure and energies of η^2 -[Ru(bpy)(tpy)(dmso)] ⁺	S21
• Table S13: Structure and energies of <i>O</i> -[Ru(bpy)(tpy)(dmso)] ⁺	S23
• Figure S3: IRC for intramolecular isomerization in [Ru(bpy)(tpy)(dmso)] ²⁺	S25
• Figure S3: IRC for intramolecular isomerization in [Ru(bpy)(tpy)(dmso)] ²⁺	S26
• Figure S3: IRC for intramolecular isomerization in [Ru(bpy)(tpy)(dmso)] ²⁺	S27

Benchmark Calculations

All calculations were performed using the Gaussian 09 package.¹³ For the aim to find a better theoretical method for our study, molecular structure of the S-linked [Ru(bpy)(tpy)(dmso)]²⁺ in the ground state was optimized with different functionals, including B3LYP,¹⁴⁻¹⁶ ω B97X-D,¹⁷ PBE0¹⁸, M062X¹⁹ and B2PLYPD²⁰, which were used in previous studies for ruthenium or other transition metal based complexes.^{11a,11c,21} Two basis set systems were employed for calculations here: one basis set was made of a double- ζ quality basis set LANL2DZ and corresponding effective core potential for ruthenium²², all-electron 6-31G(d,p) basis sets for carbon, nitrogen, hydrogen, oxygen and sulfur atoms²³. In another basis set, usual 6-31G(d,p) for nonmetal atoms and SDD for ruthenium²⁴.

It is known that Ru–S is weak interaction and the bond length is overestimated by current density functional theory, as shown in previous report.^{9b} Now, Dispersion effects that are missing in DFT functionals have been accounted for according to Grimme's correction scheme (DFT-D3).²⁵ The accuracy and reliability of the dispersion corrected density functional theory (DFT-D) approach for the description of weak interactions have been proved in recent studies.²⁵⁻²⁸ Thereby, in optimization calculations, the empirical dispersion correction introduced by Grimme²⁵ was added to the DFT functional with Becke's and Johnson's rational damping function,²⁹ and dubbed this variant DFT-D3(BJ).

In addition, considering crystals suitable for structural determination were obtained by slow evaporation of saturated acetonitrile/ethanol solutions in experimental studies,^{7a} solvent may play an important roles in geometry determination. Thus, for comparison, conductor-like polarizable continuum model (CPCM)³⁰ with solvent acetonitrile (ϵ =35.688) was also considered to optimize the involved geometries. Harmonic vibrational frequencies were calculated analytically at the same level to confirm that each stationary point was a minimum on the potential energy surface.

Optimized geometry parameters of the S-[Ru(bpy)(tpy)(dmso)]²⁺ complex with different computational methods were collected in Table 1. Experimental determined

crystal structures were also listed in the table for comparison. It is found that Ru–S bond length obtained at the PBE0-D3(BJ)/[SDD/6-31G(d,p)] level (2.290 Å) is very close to that from experimental crystal structure (2.282 Å).

MOs and Spin Density Distributions

The percentage of ruthenium or ligand character in some of the occupied (canonical) molecular orbitals (MOs) in the complexes was calculated from a full population analysis, using

% Ru(Ligand) Character =
$$\frac{\sum \phi_{Ru(ligand)}^{2}}{\sum \phi_{all}^{2}} \times 100\%$$

Where $\sum \phi_i^2$ is the sum of the squares of the eigenvalues associated with the ruthenium atomic orbital (AO) (or all AOs involved in one ligand) and all of the AOs in a particular MO, respectively. Similar calculation was used for the percentage of ruthenium or ligand character in some of the occupied (canonical) spin density distributions in the complexes associated with the radical ion state.

Reference

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc.; Wallingford CT, **2013**.
- 2. A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 3. A. D. Becke, Phys. Rev. A: Gen. Phys. 1988, 38, 3098–3100.
- 4. C. Lee, W. Yang, R. G. Parr, *Phys. ReV. B: Condens. Matter Mater. Phys.* 1988, 37, 785–789.
- 5. J. D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- 6. C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
- 7. Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215–241.

- 8. S. Grimme, J. Chem. Phys. 2006, 124, 034108.
- (a) J. P. Lomont, S. C. Nguyen, C. B. Harris, J. Phys. Chem. A 2013, 117, 2317–2324.
 (b) I. Ciofini, C. A. Daul, C. Adamo, J. Phys. Chem. A 2003, 107, 11182–11190.
 (c) D. A. Lutterman, A. A. Rachford, J. J. Rack, C. Turro, J. Phys. Chem. A 2009, 113, 11002–11006
- (a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270–283. (b) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299–310.
- (a) W. J. Hehre, R. Ditchfie, J. Pople, A. J. Chem. Phys. 1972, 56, 2257–2261.
 (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- 12. D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta.* **1990**, 77, 123–141.
- (a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104;
 (b) L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670–6688.
- 14. K. Tonigold, A. Grob, J. Comput. Chem. 2012, 33, 695-701.
- 15. H. F. Li, L. S. Zhang, H. Lin, X. L. Fan, Chem. Phys. Lett. 2014, 604, 10-14.
- 16. K. S. Thanthiriwatte, E. G. Hohenstein, L. A. Burns, C. D. Sherrill. J. Chem. Theo. Comput. 2011, 7, 88–96.
- (a) A. D. Becke, and E. R. Johnson, J. Chem. Phys. 2005, 123, 154101; (b) E. R. Johnson, and A. D. Becke, J. Chem. Phys. 2005, 123, 024101; (c) E. R. Johnson, and A. D. Becke, J. Chem. Phys. 2006, 124, 174104.
- D. P. Butcher. J, A. A. Rachford, J. L. Petersen, J. J. Rack, *Inorg. Chem.* 2006, 45, 9178–9180.
- 19. V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001.
- 20. J. J. Rack, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 2001, 123, 2432-2433.

	B3LYP	B3LYP	M062X	ωB97X-D	B2PLYPD	PBE0	PBE0	PBE0	PBE0	Exptl.
	/BS1 ^a	-D3(BJ)	/BS1	/BS1	/BS1	/BS1	-D3(BJ)	-D3(BJ)	-D3(BJ)	
		/BS1					/BS1	/BS2 ^b	/BS2(CPCM)	
bond lengths										
Ru-S	2.406	2.385	2.371	2.351	2.340	2.346	2.324	2.290	2.288	2.282
S-O	1.505	1.509	1.496	1.492	1.505	1.496	1.495	1.496	1.505	1.467
Ru-Nt	2.140	2.114	2.155	2.123	2.107	2.107	2.094	2.082	2.081	2.079
Ru-N _t "	2.014	2.003	2.026	2.006	1.998	1.992	1.986	1.978	1.979	1.975
Ru-Nt"	2.131	2.109	2.144	2.118	2.104	2.101	2.088	2.078	2.075	2.073
Ru-N _b '	2.167	2.140	2.174	2.148	2.138	2.136	2.122	2.112	2.103	2.100
Ru-N _b "	2.118	2.102	2.130	2.112	2.099	2.096	2.087	2.086	2.080	2.084
angles										
O-S-Ru	112.83	114.22	113.10	114.37	114.91	113.46	114.08	114.84	115.62	115.70
S-Ru-Nt	93.02	92.23	92.04	92.36	92.40	92.82	92.50	92.66	92.53	91.30
S-Ru-Nt	87.55	87.10	86.56	87.69	87.69	87.40	87.04	88.10	89.12	90.31
S-Ru-N _b '	95.35	96.04	96.43	96.44	96.59	95.54	95.87	96.01	96.17	96.89
dihedral angles										
d(O-S-Ru-N _t ''')	-61.92	-61.70	-62.27	-64.03	-64.07	-61.24	-60.89	-60.49	-58.51	-58.39
d(O-S-Ru-N _b ")	38.54	38.39	38.45	36.29	36.33	39.13	39.27	39.81	42.08	42.55

Table S1. Main geometrical parameters for the S-[Ru(bpy)(tpy)(dmso)]²⁺.

^a Basis set 1 (BS1) was made of a double- ζ quality basis set LANL2DZ and corresponding effective core potential for Ru, all-electron 6-31G(d,p) basis sets for carbon, nitrogen, hydrogen, oxygen and sulfur atoms.

^b In basis set 2 (BS2), usual 6-31G(d,p) for nonmetal atoms and SDD for Ru.

Table S2. The frontier MOs energies, ionization potentials as well as electron affinities for the ground state of $[Ru(bpy)(tpy)(dmso)]^{2+}$ complexes.

	номо	LUMO	IP	EA
S-[Ru(bpy)(tpy)(dmso)] ²⁺	-6.8	-2.8	6.1	-3.3
O-[Ru(bpy)(tpy)(dmso)] ²⁺	-6.1	-2.6	5.4	-3.1

Table S3. Main distributions of the frontier MOs as well as spin densities in the $[Ru(bpy)(tpy)(dmso)]^{2+}$ complexes.

	S-[Ru(bpy)(tpy)(dmso)] ²⁺				<i>0-</i> [R	u(bpy)(tp	y)(dmso)] ²⁺
	Ru(II)		Ru(III) Ru(I)		Ru(II)		Ru(III)	Ru(I)
	номо	LUMO	Spin	Spin	номо	LUMO	Spin	Spin
Ru	77.1	9.5	95.0	3.7	74.5	9.4	91.2	5.0
dmso	1.0	4.5	0	0	6.4	3.5	6.2	1.1
bpy	8.8	2.2	1.7	0	6.4	2.5	0	0
tpy	13.2	83.8	4.4	96.5	12.7	84.7	3.1	94.0

Table S4 Vertical absorption energies (in eV), dominated orbital excitations, oscillator strength (f) obtained from TD-DFT calculations. The absorption (emission) energies are based on the S0 (T1) state equilibrium geometry.

	Abs.	dominated orbitals	Е	f	Exptl.(λ _{max})
S-[Ru(bpy)(tpy)(dmso)] ²⁺	$S_0 \rightarrow S_1$	HOMO→LUMO(98%)	2.64	0.00	
	$S_0 \rightarrow S_2$	HOMO-1→LUMO(96%)	2.83	0.03	
	$S_0 \rightarrow S_3$	HOMO→LUMO+1(96%)	3.07	0.00	
	$S_0 \rightarrow S_4$	HOMO-2→LUMO(59%)	3.17	0.01	
	$S_0 \rightarrow S_5$	HOMO→LUMO+2(79%)	3.29	0.04	
	$S_0 \rightarrow S_6$	HOMO-1→LUMO+2(42%)	3.37	0.05	412nm(3.01) ^a
O-[Ru(bpy)(tpy)(dmso)] ²⁺	$S_0 \rightarrow S_1$	HOMO→LUMO(95%)	2.27	0.01	
	$S_0\!\!\rightarrow\!\!S_2$	HOMO-1→LUMO(94%)	2.52	0.00	
	$S_0 \rightarrow S_3$	HOMO→LUMO+1(55%)	2.68	0.00	
	$S_0 \rightarrow S_4$	HOMO→LUMO+2(83%)	2.77	0.01	
	$S_0 \rightarrow S_5$	HOMO-1→LUMO+1(32%)	2.93	0.04	490nm(2.53) ^a
	$S_0 \rightarrow S_6$	HOMO-1→LUMO+2(52%)	2.99	0.04	

^a Ref. 20.

Table S5. Optimized Cartesian coordinates and energies of the *S*- $[Ru(bpy)(tpy)(dmso)]^{2+}$ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at *T* = 298.15 K and *P* = 1Atm.

Ene	Energies (a.u.)					
Sur	Sum of electronic and zero-point Energies -1883.721227					
Sur	n of electronic	and thermal E	nthalpies	-1883.691107		
Sur	n of electronic	and thermal F	ree Energies	-1883.780051		
С	-2.59455100	-0.58952800	0.71632000	-		
С	-2.09254400	1.69977200	0.37094500			
С	-3.87219500	-0.26799500	1.16489200			
С	-3.36156200	2.06992000	0.80742600			
С	-4.25024700	1.07149900	1.19691700			
Η	-4.56058100	-1.03851400	1.48952600			
Η	-3.65442200	3.11145200	0.85304500			
Η	-5.24256900	1.34079600	1.54071200			
С	-0.99416000	2.59701500	-0.03242200			
С	1.22531000	2.71951100	-0.73727200			
С	-1.09826500	3.98259900	-0.03924500			
С	1.18391900	4.10755400	-0.75982000			
Н	2.12308400	2.17331200	-1.00447600			
С	0.00210900	4.74785300	-0.40988700			
Н	-0.06652600	5.83001200	-0.41996700			
Ν	-1.76356000	0.39458600	0.32004500			
С	2.66528300	-0.97203000	-1.69234700			
С	2.88428900	-0.40788900	0.54875200			
С	4.02922300	-1.18994300	-1.81616500			
Η	1.98792500	-1.14725200	-2.52114800			
С	4.26085200	-0.60935900	0.48791900			
С	4.84565500	-0.99563500	-0.70942700			
Η	4.43143500	-1.50904800	-2.77066900			
Η	4.87362700	-0.47043900	1.36932600			
Η	5.91720200	-1.15125900	-0.77000400			
С	0.12117700	0.39706500	2.76271800			
С	2.18445000	-0.03737600	1.78420900			
С	0.69672800	0.58816200	4.00873000			
Η	-0.94898000	0.48810500	2.62867800			
С	2.82452300	0.14916900	3.00756800			
С	2.07561800	0.46698900	4.13140100			
Η	2.56403300	0.61468200	5.08834000			

Ν	2.09492300	-0.57065200	-0.54395500
Ru	0.06807800	-0.09600600	-0.24667100
Ν	0.84215000	0.09627000	1.67406600
Η	0.06762600	0.82930900	4.85729300
Η	3.89923900	0.04651500	3.08578100
Η	-2.02745600	4.46183300	0.24463000
Η	2.06725100	4.66467700	-1.04888600
Ν	0.16725400	1.97776700	-0.39305300
S	-0.57292400	-0.38040700	-2.42435700
0	0.01024300	-1.57888300	-3.12309200
С	-0.22564900	1.05287800	-3.44541200
Н	-0.74470500	1.92637500	-3.04748100
Н	0.85325700	1.21285400	-3.42498800
Н	-0.55715600	0.82892700	-4.46105600
С	-2.35142500	-0.48005700	-2.64155700
Н	-2.70114600	-1.36222400	-2.10363800
Н	-2.82941900	0.42177200	-2.25609300
Н	-2.54431300	-0.59489800	-3.70961800
С	-1.99490800	-1.93388400	0.63032700
С	-2.67131800	-3.10115900	0.96235000
С	-0.07924600	-3.14825200	0.08568700
С	-2.01745000	-4.32337600	0.84898500
Н	-3.69861200	-3.05976100	1.30347700
С	-0.70146800	-4.34824500	0.40570200
Η	0.94433000	-3.11166200	-0.26849200
Η	-2.53409500	-5.24202100	1.10420900
Η	-0.15465700	-5.27823900	0.30375400
Ν	-0.70360200	-1.97154600	0.19174700

Table S6. Optimized Cartesian coordinates and energies of the η^2 -[Ru(bpy)(tpy)(dmso)]²⁺ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at T = 298.15 K and P = 1 Atm.

Imaginary frequency	-226.7
IR Inten	26.3

Ene	ergies (a.u.)			
Sur	n of electronic	and zero-point	Energies	-1883.680479
Sur	n of electronic	and thermal E	nthalpies	-1883.649889
Sur	n of electronic	and thermal F	ree Energies	-1883.741381
С	-2.49607900	-0.86569700	0.80876800	-
С	-2.26765500	1.46270800	0.43637500	
С	-3.82885100	-0.70294900	1.17564200	
С	-3.59566200	1.67574100	0.79485700	
С	-4.37036500	0.57990000	1.16581700	
Н	-4.43756900	-1.55235800	1.46051200	
Н	-4.02402100	2.67047000	0.78608000	
Н	-5.40688200	0.72669300	1.44801800	
С	-1.28224600	2.47770700	0.02113600	
С	0.91333500	2.85779200	-0.66568300	
С	-1.56401800	3.83669400	-0.04914000	
С	0.69334000	4.22640000	-0.75213500	
Η	1.87700600	2.42122200	-0.90248400	
С	-0.56647600	4.72246400	-0.44152300	
Η	-0.77440300	5.78515900	-0.50048000	
Ν	-1.76768300	0.21223800	0.45899400	
С	2.61295300	-0.61462300	-1.78173000	
С	2.95471300	-0.20184400	0.48342300	
С	3.97517300	-0.75854000	-1.99944000	
Н	1.87628300	-0.73895200	-2.56815700	
С	4.33209800	-0.33470200	0.32996100	
С	4.84976500	-0.61230200	-0.92773400	
Η	4.33542300	-0.98354800	-2.99662500	
Н	4.99403100	-0.22495400	1.17989000	
Н	5.92035500	-0.71735900	-1.06552200	
С	0.23343700	0.39765300	2.81627200	
С	2.28881600	0.07369700	1.75769100	
С	0.84583900	0.56236400	4.04708400	
Η	-0.84177100	0.45872000	2.71334300	

С	2.95482800	0.23473200	2.96948800
С	2.23150100	0.48120700	4.12708000
Н	2.74261000	0.60769100	5.07495100
Ν	2.11111000	-0.33397200	-0.56930100
Ru	0.10853500	-0.05944700	-0.10632500
Ν	0.93201900	0.15811400	1.69370600
Н	0.23486100	0.75282900	4.92145900
Н	4.03491800	0.16616000	3.00659000
Н	-2.55254100	4.20245300	0.20160200
Н	1.50095700	4.88013300	-1.05997400
Ν	-0.04324700	1.99984800	-0.29469000
S	-1.13704100	0.04767500	-2.65397300
0	-0.25233800	-1.20297900	-2.67382800
С	-0.67000700	1.06512600	-4.05582700
Η	-1.34793800	1.91940200	-4.11474100
Н	0.34864100	1.41125900	-3.87458100
Н	-0.71397700	0.46205300	-4.96609800
С	-2.77860700	-0.44665100	-3.18465500
Η	-3.18181300	-1.10695100	-2.41541800
Η	-3.40389700	0.44417900	-3.27588600
Η	-2.70052100	-0.97439800	-4.13846100
С	-1.73797500	-2.12868600	0.73610400
С	-2.27589700	-3.36862900	1.05825600
С	0.30495000	-3.10793000	0.18951800
С	-1.48460500	-4.50602000	0.93956000
Η	-3.30158300	-3.44689900	1.39823500
С	-0.17422500	-4.37485000	0.49686200
Η	1.31790300	-2.95121600	-0.16318400
Н	-1.89080700	-5.48010000	1.18915600
Н	0.47614800	-5.23481200	0.38790300
Ν	-0.44965100	-2.01128300	0.30578100

Table S7. Optimized Cartesian coordinates and energies of the *O*- $[Ru(bpy)(tpy)(dmso)]^{2+}$ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at *T* = 298.15 K and *P* = 1Atm.

Energies (a.u.)							
Sur	Sum of electronic and zero-point Energies -1883.716475						
Sur	n of electronic	and thermal E	nthalpies	-1883.685505			
Sur	n of electronic	and thermal F	ree Energies	-1883.778217			
С	2.14643600	-0.48422300	-1.48209700	-			
С	1.93718200	1.76431500	-0.77043100				
С	3.32946900	-0.18972300	-2.15261100				
С	3.11765300	2.10623900	-1.42406000				
С	3.80859500	1.11733000	-2.11880400				
Η	3.87430200	-0.95877300	-2.68670300				
Н	3.49701900	3.12047300	-1.39496800				
Н	4.72919100	1.36606700	-2.63472200				
С	1.06037700	2.65385300	0.00909400				
С	-0.89565800	2.79739600	1.26791500				
С	1.30870900	4.00899900	0.19690200				
С	-0.70333300	4.15466100	1.48895900				
Н	-1.75253300	2.27118100	1.67326900				
С	0.41796600	4.76979700	0.94485000				
Н	0.59983300	5.82790200	1.09819400				
Ν	1.48827700	0.49374700	-0.82563300				
С	-2.06212700	-0.82584300	2.35318600				
С	-3.04936200	-0.34366600	0.29810100				
С	-3.28852400	-1.14746400	2.91347700				
Н	-1.13283400	-0.87053800	2.91118100				
С	-4.31020800	-0.65476600	0.80212200				
С	-4.43180300	-1.06145200	2.12374000				
Н	-3.33934400	-1.45945100	3.95025200				
Н	-5.18786200	-0.58302300	0.17158100				
Η	-5.40656800	-1.30759600	2.53057200				
С	-1.14912400	0.73339700	-2.60471800				
С	-2.78887700	0.09592000	-1.07696600				
С	-2.09023300	0.92205000	-3.60367800				
Н	-0.09487800	0.90606400	-2.78358200				
С	-3.77968300	0.27096000	-2.03984400				
С	-3.43088500	0.68789400	-3.31650200				
Н	-4.19460000	0.82753100	-4.07363700				

Ν	-1.94285600	-0.43447300	1.07584100
Ru	-0.16171300	0.03755400	0.14572000
Ν	-1.48158000	0.33111600	-1.36786200
Н	-1.76772500	1.24845600	-4.58551000
Н	-4.81762300	0.08409400	-1.79322400
Η	2.18930900	4.46707600	-0.23753500
Н	-1.42424100	4.70888300	2.07866800
Ν	-0.04274000	2.05901700	0.54860300
S	2.26750100	-1.03630900	1.93933500
0	0.90841100	-0.26799400	1.95768400
С	3.29908200	-0.06150000	3.02931700
Н	4.24033000	-0.59146800	3.19002200
Н	3.48720800	0.88615600	2.52261900
Н	2.77226600	0.10147200	3.97170600
С	1.97414800	-2.46620900	2.97830900
Н	1.28524200	-3.11714200	2.43770400
Н	2.92302200	-2.98281800	3.13859800
Η	1.53687500	-2.14176300	3.92493100
С	1.48915000	-1.79723000	-1.37178100
С	1.96761200	-2.95348700	-1.97706500
С	-0.29542600	-2.97612000	-0.44146900
С	1.28402200	-4.15069200	-1.80002400
Н	2.86586200	-2.91973200	-2.58187000
С	0.13383900	-4.16300500	-1.01934900
Н	-1.18555400	-2.93186400	0.17615400
Н	1.64703900	-5.05969700	-2.26701600
Н	-0.43006100	-5.07376100	-0.85480400
Ν	0.35896000	-1.81938000	-0.60578200

Table S8. Optimized Cartesian coordinates and energies of *S*-[Ru(bpy)(tpy)(dmso)]³⁺ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at T = 298.15 K and P = 1Atm.

En	ergies (a.u.)			
Sui	n of electronic	and zero-point	t Energies	-1883.496732
Sui	n of electronic	and thermal E	nthalpies	-1883.466611
Sui	n of electronic	and thermal F	ree Energies	-1883.555606
			C	
С	-2.55114400	-0.83689700	0.70507300	-
С	-2.25433300	1.49936200	0.50073600	
С	-3.85980300	-0.65933700	1.14038900	
С	-3.55733300	1.72880700	0.92838500	
С	-4.36074900	0.63509800	1.23559900	
Н	-4.47525600	-1.50873300	1.40822500	
Н	-3.93660100	2.73740900	1.03310300	
Н	-5.37964100	0.79357100	1.56967400	
С	-1.23783200	2.51087600	0.19075600	
С	1.00877900	2.82900000	-0.38801600	
С	-1.44120600	3.88075000	0.26085500	
С	0.86222100	4.20748800	-0.33143300	
Н	1.95467500	2.36810600	-0.64632300	
С	-0.37959700	4.73886900	-0.00820700	
Н	-0.52428700	5.81210200	0.04213300	
Ν	-1.80417900	0.23575800	0.37879500	
С	2.61815900	-0.62448400	-1.90704200	
С	2.94604600	-0.23745800	0.37815100	
С	3.98062500	-0.72949400	-2.12463100	
Н	1.90447500	-0.78475200	-2.70722900	
С	4.32172000	-0.32929700	0.21420600	
С	4.84659700	-0.56847200	-1.04979500	
Н	4.34454300	-0.93697100	-3.12352800	
Н	4.98309200	-0.22018800	1.06357000	
Η	5.91995500	-0.63876100	-1.18660400	
С	0.24858500	0.19624900	2.76635500	
С	2.29559000	-0.02535000	1.67288500	
С	0.87127300	0.30793800	3.99948200	
Н	-0.82962700	0.23707200	2.68331600	
С	2.97809900	0.08608400	2.87980700	
С	2.25835300	0.25581300	4.05498200	
Н	2.77840800	0.34341400	5.00233000	

Ν	2.10576700	-0.36537600	-0.68824000
Ru	0.09842300	-0.06415700	-0.25643500
Ν	0.94451400	0.03616800	1.63424200
Н	0.26862100	0.43475500	4.89054200
Н	4.05897100	0.03850500	2.90797700
Н	-2.41463300	4.27474300	0.52551300
Н	1.71603500	4.84036800	-0.54054800
Ν	-0.02078900	2.00595100	-0.14994800
S	-0.71026900	-0.24330400	-2.46785200
Ο	-0.08704700	-1.39792700	-3.18783000
С	-0.41326000	1.25949100	-3.39304000
Н	-0.93923500	2.09514500	-2.92823200
Н	0.66296500	1.43842200	-3.39653400
Н	-0.77148900	1.09011100	-4.41052100
С	-2.48676100	-0.39491200	-2.59987400
Н	-2.78253200	-1.31628500	-2.09750100
Н	-2.97732900	0.47352100	-2.15885200
Н	-2.71494700	-0.46509500	-3.66513700
С	-1.82877800	-2.10770200	0.57901200
С	-2.37113300	-3.35602800	0.84331200
С	0.25460700	-3.06352600	0.09721400
С	-1.56553200	-4.48433000	0.72112400
Н	-3.40733900	-3.44986800	1.14335100
С	-0.23616400	-4.33713200	0.34786500
Н	1.28274700	-2.89612100	-0.19903600
Н	-1.97644000	-5.46706100	0.92300900
Н	0.42521900	-5.18919900	0.24892000
Ν	-0.52852000	-1.98299600	0.19727900

Table S9. Optimized Cartesian coordinates and energies of η^2 -[Ru(bpy)(tpy)(dmso)]³⁺ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at T = 298.15 K and P = 1 Atm.

Imaginary frequency	-209.7
IR Inten	19.7

En	ergies (a.u.)					
Sur	n of electronic	and zero-point	Energies	-1883.477428		
Sur	Sum of electronic and thermal Enthalpies -1883.44722					
Sur	n of electronic	and thermal F	ree Energies	-1883.537173		
С	-2.58520400	-0.84062900	0.75495100	-		
С	-2.28664000	1.48861500	0.41857100			
С	-3.90034200	-0.64032400	1.16550000			
С	-3.59376300	1.73800900	0.82112400			
С	-4.39771600	0.65899300	1.18288500			
Η	-4.52179500	-1.47177900	1.47329900			
Η	-3.98258400	2.74755200	0.86297200			
Η	-5.41972600	0.83636600	1.49787000			
С	-1.26672800	2.48621800	0.04626400			
С	0.95971900	2.81456500	-0.59390700			
С	-1.49523100	3.85414900	0.03827200			
С	0.78990500	4.19244600	-0.61596400			
Η	1.90889700	2.35534300	-0.84223500			
С	-0.45536400	4.71670300	-0.29803600			
Н	-0.62234400	5.78799900	-0.30664200			
Ν	-1.84414100	0.21795100	0.37838400			
С	2.57028200	-0.58618300	-1.93064900			
С	2.89671900	-0.10764800	0.32273200			
С	3.93706500	-0.62598600	-2.16016800			
Η	1.85503800	-0.79834800	-2.71386700			
С	4.27727400	-0.12714600	0.15613900			
С	4.80449100	-0.38177400	-1.10270600			
Η	4.30223200	-0.84753700	-3.15583800			
Н	4.93588800	0.04853300	0.99678200			
Н	5.87857800	-0.39860600	-1.24968500			
С	0.16563600	0.18264500	2.70680900			
С	2.23125700	0.09999200	1.60761800			
С	0.77946800	0.36850900	3.93249300			
Н	-0.91131000	0.13768700	2.62556400	_		

С	2.89646800	0.29214000	2.81343400
С	2.16711400	0.43090500	3.98569100
Н	2.67884900	0.58117700	4.92966900
Ν	2.05759600	-0.31654600	-0.72170300
Ru	0.02740300	-0.10400200	-0.25027900
Ν	0.87402300	0.05812900	1.57298100
Н	0.16824100	0.46418400	4.82146700
Н	3.97792800	0.32855500	2.83795700
Н	-2.47136700	4.24770900	0.29350100
Н	1.62557500	4.82914700	-0.87991500
Ν	-0.04011500	1.98601700	-0.27794100
S	-0.99149500	-0.00839900	-2.56879000
0	-0.26261400	-1.34670400	-2.34118500
С	-0.36621500	0.77794500	-4.04276800
Н	-0.96044200	1.67640700	-4.22067200
Н	0.67284100	1.04974100	-3.85429700
Н	-0.44820900	0.07264200	-4.87271400
С	-2.69519800	-0.34433100	-2.97588700
Н	-3.13140600	-0.87288300	-2.12783400
Η	-3.20348100	0.60897300	-3.13354400
Н	-2.72043600	-0.96560400	-3.87372100
С	-1.84713700	-2.11198800	0.71474500
С	-2.39141800	-3.33963900	1.06559100
С	0.22704500	-3.10063200	0.28523400
С	-1.58756800	-4.47405400	1.02091400
Η	-3.42775800	-3.41121400	1.37193200
С	-0.26023100	-4.35440800	0.62939600
Η	1.25110100	-2.95453600	-0.03706500
Η	-1.99837000	-5.44011000	1.29237500
Н	0.39783600	-5.21367800	0.58342500
Ν	-0.54692200	-2.01342800	0.32398900

Table S10. Optimized Cartesian coordinates and energies of *O*- $[Ru(bpy)(tpy)(dmso)]^{3+}$ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at *T* = 298.15 K and *P* = 1Atm.

En	Energies (a.u.)						
Sur	n of electronic	and zero-point	Energies	-1883.518063			
Sui	Sum of electronic and thermal Enthalpies -1883.487170						
Sui	n of electronic	and thermal F	ree Energies	-1883.579517			
			C				
С	2.15137500	-0.92297600	-1.31534300	-			
С	2.00539700	1.43057200	-1.10533500				
С	3.35469800	-0.81416900	-2.00491700				
С	3.20709200	1.59295500	-1.78696100				
С	3.87928800	0.45591500	-2.22777800				
Н	3.87463300	-1.69343200	-2.36394700				
Н	3.61322000	2.57858800	-1.97721000				
Н	4.81757400	0.56159100	-2.76037700				
С	1.12523400	2.49065400	-0.58852600				
С	-0.89848500	2.93937600	0.50212000				
С	1.38904300	3.84682500	-0.70893700				
С	-0.68536300	4.30735000	0.41204200				
Н	-1.78572700	2.53047300	0.97083600				
С	0.47472200	4.76459200	-0.20043700				
Η	0.66978600	5.82765600	-0.28822400				
Ν	1.53417700	0.19089200	-0.88380100				
С	-2.03194500	-0.29706100	2.53683500				
С	-3.04846200	-0.18325700	0.43569200				
С	-3.26151700	-0.40994200	3.16677500				
Н	-1.09407900	-0.29195800	3.08131600				
С	-4.30993600	-0.29433000	1.01078500				
С	-4.41591500	-0.40880200	2.39109800				
Н	-3.30363800	-0.49702300	4.24585900				
Н	-5.19958700	-0.29187600	0.39396900				
Н	-5.39260400	-0.49604600	2.85410600				
С	-1.16073200	0.14407400	-2.65812700				
С	-2.80165200	-0.05701700	-1.00369400				
С	-2.11495800	0.17233100	-3.66067900				
Η	-0.10389000	0.21144600	-2.88399100				
С	-3.80300300	-0.03089700	-1.96828500				
С	-3.45732400	0.08497100	-3.30793800				
Η	-4.23073800	0.10578100	-4.06772100				

Ν	-1.93181700	-0.18733100	1.20519900
Ru	-0.14668400	-0.00630500	0.17501800
Ν	-1.49554200	0.03441800	-1.36428500
Η	-1.80191400	0.26228900	-4.69374300
Η	-4.84367100	-0.10059000	-1.67844100
Η	2.29510200	4.18666200	-1.19503500
Η	-1.42195500	4.99079200	0.81663800
Ν	-0.01467400	2.05667300	0.02277300
S	2.42932800	-0.22043300	2.09613500
0	0.84905700	-0.11825500	1.93138500
С	2.76614800	1.10948900	3.24046900
Η	3.81353200	1.03603300	3.54184300
Н	2.59807300	2.04494200	2.70532500
Н	2.09897800	1.02149100	4.09971500
С	2.58982800	-1.64569600	3.16141900
Н	2.31190700	-2.52139400	2.57308300
Н	3.63582600	-1.72082400	3.46746800
Н	1.93081800	-1.52599500	4.02309900
С	1.42009900	-2.15677600	-0.98896100
С	1.85325800	-3.43098200	-1.32555600
С	-0.51133500	-3.03210500	0.00665000
С	1.07217800	-4.52829700	-0.97611300
Η	2.78862800	-3.56910000	-1.85375600
С	-0.12632700	-4.32866200	-0.30228700
Н	-1.43349200	-2.82112300	0.53490500
Н	1.40055600	-5.52950800	-1.23235700
Н	-0.76164100	-5.15747700	-0.01443600
Ν	0.24332100	-1.97748400	-0.32174600

Table S11. Optimized Cartesian coordinates and energies of *S*-[Ru(bpy)(tpy)(dmso)]⁺ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at T = 298.15 K and P = 1Atm.

En	Energies (a.u.)						
Su	m of electronic	and zero-point	Energies	-1883.844212			
Sui	Sum of electronic and thermal Enthalpies -1883.813585						
Sui	m of electronic	and thermal F	ree Energies	-1883.904086			
С	2.47212700	0.95212100	0.65355300	_			
С	2.21066100	-1.44087100	0.58806800				
С	3.73981100	0.83110900	1.18835800				
С	3.49803100	-1.58690000	1.12327800				
С	4.25964300	-0.46358000	1.40571700				
Η	4.32149800	1.70587900	1.45408100				
Η	3.89264900	-2.57560000	1.33237300				
Η	5.25394000	-0.57782700	1.82296400				
С	1.24769000	-2.46391100	0.29946500				
С	-0.93401100	-2.92473600	-0.46686300				
С	1.47623600	-3.84768500	0.45335300				
С	-0.75648600	-4.28565500	-0.32649500				
Н	-1.86925200	-2.50999600	-0.83036600				
С	0.48847000	-4.75306300	0.14437200				
Н	0.66731400	-5.81683600	0.26316600				
Ν	1.76549300	-0.16373600	0.32511700				
С	-2.78464500	0.36521800	-1.81145600				
С	-2.93025700	0.22993400	0.50147300				
С	-4.16268700	0.46645900	-1.93413300				
Н	-2.12512300	0.37836700	-2.67497900				
С	-4.31945100	0.32436100	0.44331200				
С	-4.94787300	0.44163600	-0.78769700				
Н	-4.60293500	0.56130500	-2.92035900				
Н	-4.90854600	0.30673900	1.35170700				
Η	-6.02849700	0.51452700	-0.84666300				
С	-0.08417400	-0.05042600	2.73679800				
С	-2.18803300	0.11977600	1.76253000				
С	-0.62329000	-0.07055000	4.01359900				
Н	0.98493200	-0.10935400	2.57620500				
С	-2.79220000	0.10467500	3.01900000				
С	-2.00408400	0.00740000	4.15652600				
Н	-2.46339900	-0.00591500	5.13902700				

Ν	-2.16901000	0.24268400	-0.62312900
Ru	-0.10231500	0.03938600	-0.30567500
Ν	-0.84345600	0.04064300	1.63645100
Η	0.03388700	-0.14653900	4.87198700
Η	-3.86891300	0.16967000	3.11122700
Η	2.43953500	-4.18945300	0.81657000
Η	-1.56203400	-4.96544500	-0.57762200
Ν	0.02084600	-2.02381800	-0.17931700
S	0.61704900	0.01665200	-2.46134100
0	-0.35358200	0.27341800	-3.58875800
С	1.46391500	-1.51592700	-2.86028800
Η	2.26418700	-1.68478400	-2.13703700
Η	0.72941600	-2.31925900	-2.79809300
Η	1.85832400	-1.42976400	-3.87432200
С	1.98349200	1.15456500	-2.71867500
Н	1.60351300	2.16420200	-2.55947900
Н	2.78305500	0.93267800	-2.00960500
Η	2.32895000	1.03543000	-3.74700600
С	1.73113100	2.19086200	0.41026200
С	2.24763900	3.46893400	0.63378400
С	-0.29540100	3.11758800	-0.30740300
С	1.46630100	4.58310500	0.37844300
Н	3.25929800	3.58162500	1.00617800
С	0.16482400	4.40536600	-0.09902500
Н	-1.29527300	2.92265900	-0.67999600
Н	1.86188000	5.57857100	0.54942300
Н	-0.48291100	5.24861800	-0.30891300
Ν	0.45726500	2.03064700	-0.07174900

Table S12. Optimized Cartesian coordinates and energies of η^2 -[Ru(bpy)(tpy)(dmso)]⁺ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at T = 298.15 K and P = 1 Atm.

Imaginary frequency	-36.2
IR Inten.	5.7

En	ergies (a.u.)					
Su	n of electronic	and zero-point	t Energies	-1883.800391		
Sui	Sum of electronic and thermal Enthalpies -1883.774334					
Sui	n of electronic	and thermal F	ree Energies	-1883.869306		
С	-0.28491700	0.76182600	-0.29257400	-		
С	-0.06767100	-1.61458500	-0.15931000			
С	-0.76518700	0.65711700	-1.59393000			
С	-0.54115900	-1.74815100	-1.45734900			
С	-0.88862400	-0.60250900	-2.17852600			
Н	-1.04656400	1.54490200	-2.14936300			
Н	-0.65070100	-2.72918800	-1.90602500			
Н	-1.26352000	-0.69435600	-3.19170200			
С	0.30910400	-2.67682100	0.76033600			
С	1.01140500	-3.17498700	2.93817700			
С	0.33215100	-4.03520800	0.43218900			
С	1.04856300	-4.52817600	2.66557600			
Н	1.27575300	-2.78457600	3.91526400			
С	0.69979700	-4.96974200	1.38368200			
Н	0.72053700	-6.02561700	1.13609800			
Ν	0.05522500	-0.37123600	0.39321600			
С	0.33868600	0.03200700	5.23944300			
С	2.54636900	0.04228200	4.49001300			
С	0.74965700	0.14676600	6.55876300			
Н	-0.70864100	-0.01081300	4.94477100			
С	3.02125000	0.15645400	5.79520300			
С	2.11263400	0.20659600	6.84278400			
Н	0.00770800	0.18871900	7.34825300			
Н	4.08595900	0.20778700	5.98991200			
Η	2.46287700	0.29472300	7.86561100			
С	3.37077300	-0.13068300	0.96311100			
С	3.38783800	-0.00414900	3.29406000			
С	4.75313400	-0.07835400	0.90964900			
Н	2.76364700	-0.20303200	0.06818600			

С	4.78026800	0.04884300	3.29994900
С	5.47303500	0.01120200	2.09904000
Н	6.55668600	0.05208000	2.09053000
Ν	1.21781400	-0.02502200	4.22466700
Ru	0.69262400	-0.20375700	2.23397100
Ν	2.69649100	-0.09632100	2.12615300
Н	5.25043700	-0.10868600	-0.05305500
Н	5.31604200	0.11996700	4.23908700
Н	0.06606400	-4.34827800	-0.57120600
Н	1.34475200	-5.22386800	3.44245200
Ν	0.64675900	-2.25280900	2.02468100
S	-2.72247900	0.47573700	2.36498600
0	-2.55322100	-0.02062600	3.79584000
С	-4.35251300	-0.07688500	1.82798300
Н	-4.56996800	0.35093600	0.84641800
Н	-4.31559200	-1.16512100	1.75338500
Н	-5.10418200	0.22653100	2.56100300
С	-3.09367600	2.23585200	2.46412400
Н	-2.19875800	2.73641800	2.83774800
Н	-3.32821200	2.60856800	1.46433200
Н	-3.93119300	2.39656700	3.14761100
С	-0.10069700	1.97089500	0.48842600
С	-0.34573900	3.26562400	0.01594600
С	0.55117200	2.84243500	2.56607000
С	-0.14239100	4.35455200	0.84210200
Н	-0.69430700	3.40667000	-1.00108200
С	0.32140800	4.13714300	2.14750600
Н	0.90724800	2.62383100	3.56715600
Н	-0.33509400	5.35961500	0.48274200
Н	0.49849300	4.96071900	2.82983100
Ν	0.33911700	1.76664500	1.77869600

Table S13. Optimized Cartesian coordinates and energies of *O*- $[Ru(bpy)(tpy)(dmso)]^+$ at PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimizations are conducted in acetonitrile by using the CPCM model. Thermochemical data are given at *T* = 298.15 K and *P* = 1Atm.

Energies (a.u.)							
Sur	Sum of electronic and zero-point Energies -1883.830678						
Sur	n of electronic	-1883.799326					
Sur	n of electronic	-1883.893477					
С	2.16584600	-0.37114700	-1.45182000	-			
С	1.83233200	1.89667200	-0.73990600				
С	3.32920200	0.02791500	-2.13694800				
С	2.97411300	2.31631700	-1.39795900				
С	3.72454100	1.35169800	-2.10802200				
Н	3.91758600	-0.70229500	-2.68279000				
Н	3.28975000	3.35249600	-1.37629500				
Η	4.62225900	1.65629700	-2.63567000				
С	0.90318900	2.73122500	0.03364500				
С	-1.06646200	2.76435300	1.28836300				
С	1.05848400	4.10446000	0.21714100				
С	-0.96420200	4.12907000	1.50067800				
Н	-1.89031600	2.18684800	1.69414400				
С	0.12201400	4.81313500	0.95507800				
Η	0.23555900	5.88191100	1.10202400				
Ν	1.45477200	0.59867900	-0.78022600				
С	-2.09566800	-0.91801000	2.33540500				
С	-3.04326400	-0.50642600	0.24783400				
С	-3.31805200	-1.30290400	2.86153200				
Н	-1.18213900	-0.91048600	2.92130800				
С	-4.30074100	-0.88429900	0.71719100				
С	-4.44173400	-1.28755400	2.03709400				
Н	-3.38316300	-1.60988400	3.89929900				
Н	-5.16087100	-0.86471600	0.05871800				
Η	-5.41316900	-1.58509300	2.41692700				
С	-1.11383700	0.67113300	-2.59404500				
С	-2.76587400	-0.05936200	-1.11933000				
С	-2.02894100	0.79364900	-3.62586500				
Н	-0.06417000	0.90295100	-2.72907400				
С	-3.73081300	0.04779600	-2.11949900				
С	-3.36407000	0.47825800	-3.38589400				
Н	-4.10666300	0.56479800	-4.17158000				

Ν	-1.95378000	-0.52957000	1.05750100
Ru	-0.18520300	0.03940000	0.17206900
Ν	-1.46377600	0.25639000	-1.36356800
Η	-1.69275400	1.13153200	-4.59953600
Η	-4.76293800	-0.20468300	-1.90782300
Η	1.91085400	4.61176400	-0.21996400
Η	-1.72166500	4.64037400	2.08387400
Ν	-0.16447100	2.06865900	0.57722700
S	2.36683700	-0.80496500	1.89393900
0	0.91388900	-0.25119500	1.99654900
С	3.14631600	-0.14135900	3.36431600
Н	4.14312000	-0.57643400	3.46363000
Н	3.22453500	0.93777900	3.22463900
Н	2.52872300	-0.37220000	4.23496700
С	2.24744500	-2.52828500	2.38560800
Н	1.72208900	-3.05517600	1.58718200
Н	3.25759200	-2.93043300	2.49365400
Н	1.69390600	-2.60049100	3.32452400
С	1.61552300	-1.68214400	-1.32312600
С	2.16860800	-2.85283400	-1.89309100
С	-0.11000800	-2.98854700	-0.37367500
С	1.57605400	-4.07471400	-1.69012500
Н	3.07055200	-2.77399800	-2.49141700
С	0.39813500	-4.15372100	-0.90816300
Н	-1.01074000	-2.99154500	0.23367100
Н	2.00719200	-4.97019300	-2.12634300
Н	-0.10322700	-5.09729600	-0.72738500
Ν	0.45978700	-1.78168200	-0.54459700

Figure S1. Intrinsic reaction coordinate (IRC) for intramolecular isomerization in $[Ru(bpy)(tpy)(dmso)]^{2+}$ performed at the PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimized structures (Tables S5-S7 for Cartesian coordinates and transition vector are shown).

Figure S2. Intrinsic reaction coordinate (IRC) for intramolecular isomerization in $[Ru(bpy)(tpy)(dmso)]^{3+}$ performed at the PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimized structures (Tables S8-S10 for Cartesian coordinates and transition vector are shown).

Figure S3. Intrinsic reaction coordinate (IRC) for intramolecular isomerization in $[Ru(bpy)(tpy)(dmso)]^+$ performed at the PBE0-D3(BJ)/[SDD/6-31G(d,p)] level. Optimized structures (Tables S11-S13 for Cartesian coordinates and transition vector are shown).