Surfactant free gram scale synthesis of mesoporous Ni(OH)₂-r-GO nanocomposite for high rate pseudocapacitor application

Upendra Singh, Abhik Banerjee^{*}, Dattakumar Mhamane, Anil Suryawanshi, Kush Kumar Upadhyay and Satishchandra Ogale^{*}

Electronic Supplementary Information (ESI)

ESI-I: SEM image, elemental map, and energy dispersive x-ray analysis (EDAX) data for (a-c) Ni(OH)₂-r-GO and (d-f) Ni(OH)₂.

Figure above shows the Scanning Electron Microscopy (SEM) and energy dispersive x-ray analysis (EDAX) analysis for Ni(OH)₂-r-GO (a) and Ni(OH)₂ (b). The presence of different faceted structures for Ni(OH)₂ in both the samples can be easily observed (please see Figure a and b). The morphology is mainly dominated by hexagonal plates. In the case of Ni(OH)₂-r-GO as well the basic morphology is similar. In order to confirm the presence of graphene we drop casted the composite solution on conducting silicon substrate to perform the elemental mapping analysis. The map shown in the Figure b shows the overlay of nickel (Ni), oxygen (O) and carbon (C). The inset of Figure b shows the elemental maps of individual element present in the sample, confirming their uniform distribution in the Ni(OH)₂-r-GO composite. Energy dispersive analysis of x-rays (EDAX) spectrum for Ni(OH)₂-r-GO is depicted in Figure c. Figure (d-f) show the FE-SEM image, elemental mapping, and EDAX spectrum for the bare Ni(OH)₂ sample for comparison. No carbon contribution is seen as expected.

Electrode	Synthesis	Flasteralerta	Specific capacitance at low	Specific capacitance at high
Structure	Method	Electrolyte	current density/scan rate	current density/ scan rate
Ni(OH) ₂ - r-GO (Present	Hydrothermal	2М КОН	1795 Fg ⁻¹ @ 1Ag ⁻¹	1538 Fg ⁻¹ @ 40 Ag ⁻¹
work)				
Ni(OH) ₂ /Carbon Paper)	Hydrothermal	2М КОН	1707 Fg ⁻¹ @ 1Ag ⁻¹	936 Fg ⁻¹ @ 40 Ag ⁻¹
(Present work)				
Ni(OH) ₂ /UGF ⁴⁵	CVD	6M KOH	1560 Fg ⁻¹ @ 0.5 Ag ⁻¹	1092 Fg ⁻¹ @ 10 Ag ⁻¹
Ni(OH) ₂ /r-GO/NF ⁴⁶	Reflux reaction	1М КОН	1828 Fg ⁻¹ @ 1 Ag ⁻¹	780 Fg ⁻¹ @ 10 Ag ⁻¹
Ni(OH) ₂ /Graphene/NF ³²	Co-precipitation	6M KOH	2194 Fg ⁻¹ @ 2 mVs ⁻¹	895 Fg ⁻¹ @ 20 mVs ⁻¹
Ni(OH) ₂ /Graphene/NF ⁴⁷	Hydrothermal	6M KOH	1985.1Fg ⁻¹ @5 Acm ⁻²	912.6Fg ⁻¹ @ 40 mAcm ⁻²
Ni(OH) ₂ /Graphite/NF ⁴⁸	Reflux reaction	6М КОН	1956 Fg ⁻¹ @ 1Ag ⁻¹	1519.9 Fg ⁻¹ @ 40 Ag ⁻¹
Ni(OH) ₂ /Graphene/NF ⁴⁹	Precipitation	6М КОН	2134 Fg ⁻ 1 @ 2 mVs ⁻¹	822 2 Fg ⁻¹ @ 70 mVs ⁻¹
Ni(OH) ₂ /Graphite ⁵⁰	Electrodeposition	5.3M KOH	1850 Fg ⁻¹ @ 3.2 Ag ⁻¹	550 Fg ⁻¹ @ 11.9 Ag ⁻¹
RGO/Ni(OH) ₂ /NF ⁵¹	Hydrothermal	1М КОН	1667 Fg ⁻¹ @ 3.3 Ag ⁻¹	444.75 Fg ⁻¹ @ 33 Ag ⁻¹
RGO/CNT/Ni(OH) ₂ / NF ⁵²	Hydrothermal	2М КОН	1320 Fg ⁻¹ @ 6 Ag ⁻¹	943 Fg ⁻¹ @ 25 Ag ⁻¹
Ni(OH) ₂ /Graphite ²	Electrodeposition	1M KOH	1868 Fg ⁻¹ @ 20 Ag ⁻¹	1430 Fg ⁻¹ @ 40 Ag ⁻¹

ESI-II: Table 1. Comparison of results with recent reports