Electronic Supplementary Information for

Nitrogen-Doped Carbon Coated SiO Nanoparticles Co-modified with Nitrogen-Doped Graphene as Superior Anode Material for Lithium-ion Batteries

Chenfeng Guo^a, Jingxuan Mao^b, Dianlong Wang^{a*}

^a Harbin Institute of Technology, School of Chemical Engineering and Technology, Harbin 150001, P R China
 ^b Harbin Engineering University, College of Software, Harbin 150001, P R China.
 Fax: +86 451 86413721; Tel: +86 451 86413751

* To whom correspondence should be addressed. E-mail: wangdianlonghit@163.com,

chenfeng1984hit@aliyun.com

Figure S1. XPS survey scan of NC-SiO.

Figure S2. EDAX spectra from the surface of the ASiO/(NC+NG) NCPs.

Figure S3. FESEM image of (a) as-received SiO powder; (b) ASiO NPs and (c) NC-ASiO NPs.

Figure S4. FESEM image of as-prepared (a) PG and (b) NG.

Figure S5. AFM images of ASiO/(NC+NG) NCPs at different magnification: (a) overing an area of 4μ m by 4μ m; (b) overing an area of 1μ m by 1μ m and (c) its section analysis.

Figure 6. (a) Nitrogen adsorption/desorption isotherms at 77 K, and (b) pore-size distribution curves of ASiO/(NC+NG) NCPs.

Figure S7. Superior cycle stability of ASiO/(NC+NG) NCPs in the long-run up to 500 cycles under a current density of 100 mA g⁻¹. (Red: discharge capacity; cyan: charge capacity; blue: coulombic efficiency).

Figure S8. HRTEM image of C-ASiO. About 3 nm thickness of amorphous carbon coating layer is found on the surface of ASiO particle, which confirmed the similar coating thickness with NC coating layer. The similar size and morphology of C-ASiO and NC-ASiO, coupled with the similar results of ASiO content analysis and the XRD analysis could clarify the similarity of carbon coating and NC coating technique.

	С	0	Si	Ν	
Sample	(wt%)	(wt%)	(wt%)	(wt%)	
ASiO/(NC+NG)	30.47	28.49	38.43	2.61	
ASiO/(NC+PG)	31.37	29.41	38.44	0.78	
NC-ASiO	12.69	31.28	54.91	1.12	
C-ASiO	13.11	31.59	55.30	0.00	

Table S1. Elemental Composition of ASiO/(NC+NG), ASiO/(NC+PG), NC-ASiO and C-ASiO.

Table S2. The circuit parameters derived using equivalent circuit model for the ASiO/(NC+NG) electrode performed after 20th, 30th and 40th cycles.

Electrodes	R _e	R_{f}	Q_1	η_1	C_1	R _{ct}	Q_2	η_2	C_2
(ASiO/(NC+NG))	(Ω)	(Ω)	(µF)		(µF)	(Ω)	(µF)		(µF)
20th	22.03	47.06	40.29	0.76	436.83	204.4	130.5	0.72	6868.60
30th	20.42	37.62	46.39	0.69	1327.10	176.6	151.4	0.71	9736.09
40th	18.96	35.56	51.26	0.69	1498.37	149.7	165.9	0.71	10351.78