Electronic Supplementary Information (ESI)

A facile synthesis of 2*H*-indazoles under neat conditions and further transformation into $aza-\gamma$ -carboline alkaloid analogues in a tandem one-pot fashion

Shinde Vidyacharan, A. Sagar, N. C. Chaitra and Duddu S. Sharada*

Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram-502 205, Medak District, Andhra pradesh.

E-mail: sharada@iith.ac.in

Table of Contents

Experimental section	(S2)
Methods for 2-azidoaldehyde preparation and its spectral data	(S3-S4)
General procedure for 2 <i>H</i> -indazole synthesis and stepwise/one-pot methods f	or
indazolo[2,3-a]quinoxalines synthesis	(85-86)
X-ray crystal structure data for 2-(4-Methoxybenzyl)-2H-indazole (3k)	(S7)
Spectral data of all compounds (3a-x), 5 and (6a-i)	(S8-S22)
Copies of ¹ H, ¹³ C NMR spectra of all compounds S3, S4, (4a-z),	
(5) and (6a-i)	(S23-S59)
References	(860)

Experimental Section

General: IR spectra were recorded on a Bruker Tensor 37 (FTIR) spectrophotometer. ¹H NMR spectra were recorded on Bruker Avance 400 (400 MHz) spectrometer at 295 K in CDCl₃; chemical shifts (δ in ppm) and coupling constants (J in Hz) are reported in standard fashion with reference to either internal standard tetramethylsilane (TMS) ($\delta_{\rm H} = 0.00$ ppm) or CHCl₃ ($\delta_{\rm H} =$ 7.25 ppm). ¹³C NMR spectra were recorded on Bruker Avance 400 (100 MHz) spectrometer at RT in CDCl₃; chemical shifts (δ in ppm) are reported relative to CHCl₃ (δ _C = 77.00 ppm). In the ¹H-NMR, the following abbreviations are used throughout: s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, m = multiplet and br s = broad singlet, sept = septet. The assignment of signals were confirmed by ¹H and ¹³C spectral data. High-resolution mass spectra (HR-MS) were recorded on an Agilent 6538 UHD Q-TOF using multimode source. Microwave experiments were carried out with CEM Discover LabmateTM instrument in 10 ml vial, closed vessel, Power: 250W, Temperature: 60 °C-100 °C for 50-100 minutes. Melting points were determined using melting point apparatus manufactured by GUNA enterprises, India and are uncorrected. All small scale reactions were carried out using standard syringe-septum technique. Reactions were monitored by TLC on silica gel using a combination of hexane and ethyl acetate as eluents. Solvents were distilled prior to use. We gave all spectral data for known and unknown compounds.

- (A) General procedure for 2-azidoaldehyde preparation:¹
- (B) General procedure for the synthesis of 1-azido-2-naphthaldehyde (S4):^{1b}

All 2-azidobenzaldehydes were prepared by using literature known methods except S4

1-Chloro-2-naphthaldehyde S2: The general procedure was followed using 1.33 mL of α -tetralone (10.0 mmol), 1.9 mL of POCl₃ (20.0 mmol), and 4.0 ml of DMF. Purification by column chromatography with hexane:EtOAc/20:1 afforded **S2** as a slightly yellow oil (70-75%). (**Caution**: Reaction should be carried at room temperature as the product is volatile). For spectral data see reference 1.

1-Chloro-2-napthaldehyde S3: The general procedure was followed using 1.465 g of chloroalkenal (7.57 mmol), DDQ (15.15 mmol), and 60 ml of chlorobenzene. The reaction mixture was refluxed at 130 °C for 72 h. It was then poured into saturated aqueous NaHCO₃ solution and extracted with ethyl acetate (3 × 20 mL). The ethyl acetate extract was dried over Na₂SO₄. Evaporation of the solvent and purification of the residue over a silicagel column using hexane:ethyl acetate/99:1 as eluent furnished the saturated chloroaldehyde **S3** (1.0 g, 95%) as a pale yellow solid. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3059$, 2867, 2746, 1683, 1650, 1618, 1594, 1557, 1455, 1318, 1218, 993, 894, 812, 754. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 10.74$ (s, 1H), 8.48-8.44 (m, 1H), 7.92 (d, 1H, J = 8.8 Hz), 7.88-7.85 (m, 1H), 7.79 (d, 1H, J = 8.8 Hz),

7.70-7.65 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 190.4$, 138.8, 137.0, 130.8, 129.7, 129.6, 128.4, 127.0, 125.4, 123.3. HR-MS (ESI+) m/z calculated for $[C_{11}H_8ClO]^+ = [M+H]^+$: 191.0258; found: 191.0262.

1-Azido-2-naphthaldehyde S4: To a solution of 1-chloro-2-naphhaldehyde (2.0 mmol, 1.0 equiv) in 3.0 mL of DMSO was added NaN₃ (2.4 mmol, 1.2 equiv). The mixture was stirred at ambient temperature and monitored by TLC. Once the starting material disappeared, the reaction mixture was poured in ice cold water (30.0 mL) and extracted with dichloromethane (10 mL×2). The DCM layer was washed with water (10 mL×2), brine (20 mL×1). The organic layer was dried over Na₂SO₄, filtered and concentrated to afford the crude product. Purification by column chromatography with hexane/EtOAc afforded the final analytically pure product. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3041$, 2865, 2110, 2027, 1984, 1926, 1684, 1618, 1592, 1455, 1377, 1330, 1258, 1217, 812, 752. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 10.25$ (s, 1H), 8.48-8.46 (m, 1H), 7.94 (d, 1H, J = 8.3 Hz), 7.90-7.87 (m, 1H), 7.81 (d, 1H, J = 8.3 Hz), 7.71-7.66 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 193.6$, 129.7, 129.5, 128.7, 125.6, 121.8, 116.2. HR-MS (ESI+) m/z calculated for [C₁₃H₁₁N₂]⁺ = [M+H]⁺: 198.0662; found: 198.0661.

(C) General procedure for the synthesis of 2*H*-indazole (3a-x):

2-Azidobenzaldehyde **1** (1 mmol), amine **2** (1 mmol) were taken in a 10 mL microwave vessel and sealed with microwave septum. It was then placed in to CEM Discover system under the irradiation conditions: 3-5 min run time with high stirring. Maximum power and maximum pressure were set at 250 W and 300 psi respectively, with a set temperature of 60-100 °C for 50-100 min (hold time) depending on the components. After completion, the mixture was cooled to room temperature. The reaction mixture was diluted with EtOH and slight amount of charcoal was added, filtered, dried in vacuo and recrystallized using ethanol and few of them are purified on a silica gel column chromatography (hexane/ethylacetate 90:10 to 85:15). All the compounds were confirmed by FTIR, ¹H NMR, ¹³C NMR and HR-MS Spectral analyses and **3k** was further confirmed by XRD. Among 24 compounds, 10 (**3b**, **3c**, **3n**, **3p**, **3s-3x**) are unknown and 14 (**3a**, **3d-3m**, **3o**, **3q** and **3r**) are known.

(D) General procedure for the synthesis of indazolo[2,3-*a*]quinoxalines (6a-i) in stepwise:

2*H*-indazole **3** (1 mmol) and aldehyde **4** (1 mmol) were taken in 10 mL microwave vessel and added 1% TFA in toluene, sealed with microwave septum. It was then placed in to CEM Discover system under the irradiation conditions: 3-5 min run time with high stirring. Maximum power and maximum pressure were set at 250 W and 300 psi respectively, with a set temperature of 110 $^{\circ}$ C for 30 min (hold time). After completion, the mixture was cooled to room temperature. Then 0.5 equivalent of DDQ was added and treated under the same conditions as above for 15 min. On cooling to room temperature, the reaction mixture was quenched with NaHCO₃, extracted with ethylacetate, dried over Na₂SO₄ and was purified on a silica gel column chromatography (hexane/ethylacetate 90:10) which furnished the respective solids (**6a-i**). All the compounds were confirmed by FTIR, ¹H NMR, ¹³C NMR and HR-MS spectral analyses.

S.no	% TFA in solvent	Temperature (°C)	Yield (%)
1	50% TFA in DCE	85	97
2	40% TFA in DCE	85	97
3	20% TFA in DCE	85	94
4	10% TFA in DCE	85	92
5	5% TFA in DCE	85	85
6	5% TFA in toluene	110	97
7	1% TFA in toluene	110	96
8	Toluene	110	15

Table 1: Screening of %TFA and its solvent for Pictet-Spengler strategy:

(E) General procedure for sequential one-pot synthesis of indazolo[2,3-a]quinoxaline (6a-i):

2-Azidobenzaldehyde **1** (1 mmol), diamine **2** (1 mmol) were taken in a 10 mL microwave vessel and sealed with microwave septum. It was then placed in to CEM Discover system under the irradiation conditions: 3-5 min run time with high stirring. Maximum power and maximum pressure were set at 250 W and 300 psi respectively, with a set temperature of 85 °C for 60 min (hold time). Once indazole formation was confirmed by TLC, aldehyde **4** and 1% TFA in toluene were added and treated under the microwave condition: 3-5 min run time with high stirring. Maximum power and maximum pressure were set at 250 W and 300 psi respectively, with a set temperature of 110 °C for 30 min (hold time). After completion, the mixture was cooled to room temperature. Then 0.5 equivalent of DDQ was added and treated under the same conditions as above for 15 min. On cooling to room temperature, the reaction mixture was quenched with NaHCO₃, extracted with ethylacetate, dried over Na₂SO₄ and was purified on a silica gel column chromatography (hexane/ethylacetate 90:10) furnished the respective solids (**6a-i**). All the compounds were confirmed by FTIR, ¹H NMR, ¹³C NMR and HR-MS spectral analyses.

(G) X-ray crystal structure data for 2-(4-Methoxybenzyl)-2*H*-indazole (3k) CCDC 994876:

Operator	K. Ravikumar
Diffractometer	Oxford Super Nova
Empirical formula	$C_{15}H_{14} N_2 O$
Formula weight	238.28
Temperature/K	293(2)
Wavelength/A	1.54184
Crystal system	Monoclinic
Space group	P 21
a/Å	9.4150(16)
b/Å	5.6395(9)
c/Å	12.3566(18)
α/°	90
β/°	110.273(18)
$\gamma/^{\circ}$	90
Volume/Å ³	615.44 (18)
Z	2
$\rho_{calc} mg/mm^3$	1.286
m/mm ⁻¹	0.652
F(000)	252
Crystal size/mm ³	0.18 x 0.16 x 0.12
2Θ range for data collection	3.814 to 70.672
Index ranges	-11<=h<=10, -6<=k<=3, -14<=l<=15
Reflections collected	2239
Independent reflections	1654 [R (int) = 0.0200]
Data/restraints/parameters	1654 / 1 / 165
Goodness-of-fit on F ²	1.091
Final R indexes [I>= 2σ (I)]	R1 = 0.0386, wR2 = 0.0975
Final R indexes [all data]	R1 = 0.0463, wR2 = 0.1079
Largest diff. peak/hole / e Å ⁻³	0.146 and -0.128

Spectral data of all compounds (3a-x), 5 and (6a-i):

2-Phenyl-2*H***-indazole (3a)**:^[2] Reaction time = 50 min; Cream solid (94%), Mp 74–76 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{\text{max}} = 3128$, 3055, 2923, 2852, 1628, 1595, 1519, 1496, 1379, 1314, 1204, 1046, 780, 751. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\text{H}} = 8.42$ (s, 1H), 7.92 (d, 2H, J = 7.3 Hz), 7.82 (d, 1H, J = 8.8 Hz), 7.72 (d, 1H, J = 8.3 Hz), 7.54 (t, 2H, J = 7.8 Hz), 7.43-7.40 (m, 1H), 7.36-7.32 (m, 1H), 7.13 (dd, 1H, $J_a = 7.8$ and $J_b = 6.8$ Hz). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\text{C}} = 149.8$, 140.6, 129.6, 127.9, 126.9, 122.8, 122.5, 121.0, 120.5, 120.4, 118.0. HR-MS (ESI+) m/z calculated for [C₁₃H₁₁N₂]⁺ = [M+H]⁺: 195.0917; found: 195.0908.

2-(2,3-dimethylphenyl)-2*H***-indazole (3b)**: Reaction time = 50 min; Brown solid (97%), Mp 68–70 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3052$, 2945, 2921, 1625, 1583, 1515, 1482, 1387, 1346, 1265, 1192, 1110, 1081, 1029, 957, 780, 755, 713, 662. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.05$ (s, 1H), 7.79 (d, 1H, J = 8.8 Hz), 7.72 (d, 1H, J = 8.3 Hz), 7.34-7.27 (m, 2H), 7.21 (m, 2H), 7.14-7.11 (m, 1H), 2.35 (s, 3H), 2.03 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 149.2$, 140.5, 138.5, 133.0, 130.7, 126.3, 125.9, 124.7, 124.5, 122.1, 121.9, 120.3, 117.9, 20.3, 14.3. HR-MS (ESI+) m/z calculated for [C₁₅H₁₅N₂]⁺ = [M+H]⁺: 223.1230; found: 223.1221.

2-(2-Bromo-4-methylphenyl)-2*H***-indazole (3c)**: Reaction time = 50 min; Brown solid (90%), Mp 66–68 °C. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} = 3057, 2921, 1521, 1500, 1386, 1200, 1070, 1030, 954, 820, 784, 755, 646. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 8.25 (s, 1H), 7.8 (d, 1H, *J* = 8.8 Hz), 7.74 (d, 1H, *J* = 8.3 Hz), 7.57 (s, 1H), 7.49 (d, 1H, *J* = 7.8 Hz), 7.37-7.33 (m, 1H), 7.26 (d, 1H, *J* = 7.3 Hz), 7.16-7.12 (m, 1H), 2.43 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ = 149.3, 141.0, 137.8, 134.0, 129.0, 128.4, 126.8, 125.2, 122.3, 121.9, 120.5, 118.5, 118.0, 20.9. HR-MS (ESI+) m/z calculated for [C₁₄H₁₂BrN₂]⁺ = [M+H]⁺: 287.0178; found: 287.0168.

2-(4-Methoxy-2-methylphenyl)-2*H***-indazole (3d):^[3] Reaction time = 50 min; Brown solid (92%), Mp 82–84 °C. IR (MIR-ATR, 4000–600 cm⁻¹) v_{max} = 2923, 2854, 1612, 1568, 1545, 1452, 1409, 1264, 1153, 1094, 1004, 806, 748, 696. ¹H NMR (CDCl₃, 400 MHz): \delta_{\rm H} = 8.06 (s, 1H), 7.80 (d, 1H, J = 8.8 Hz), 7.74 (d, 1H, J = 8.3 Hz), 7.36-7.33 (m, 2H), 7.17-7.13 (m, 1H), 6.88-6.83 (m, 2H), 3.87 (s, 3H), 2.2 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): \delta_{\rm C} = 159.9, 149.1, 135.5, 133.7, 127.7, 126.3, 124.6, 122.0, 122.0, 120.2, 117.9, 116.1, 111.6, 55.5, 18.0. HR-MS (ESI+) m/z calculated for [C₁₅H₁₅N₂O]⁺ = [M+H]⁺: 239.1179; found: 239.1188.**

2-(3,4,5-trimethoxyphenyl)-2*H***-indazole (3e):^[4]** Reaction time = 50 min; Brown solid (90%), Mp 82–84 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3124$, 2937, 2830, 1599, 1518, 1504, 1467, 1423, 1319, 1225, 1122, 1072, 998, 830, 753, 729. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.36$ (s, 1H), 7.78 (d, 1H, J = 8.8 Hz), 7.69 (d, 1H, J = 8.3 Hz), 7.32 (dd, 1H, $J_a = 8.3$ and $J_b = 7.3$ Hz), 7.13-7.09 (m, 3H), 3.96-3.95 (m, 6H), 3.90 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_C = 153.8$, 137.9, 136.6, 126.9, 122.7, 122.5, 120.7, 120.3, 117.8, 98.9, 61.0, 56.4. HR-MS (ESI+) m/z calculated for $[C_{16}H_{17}N_2O_3]^+ = [M+H]^+$: 285.1234; found: 285.1224.

2-(2-Bromophenyl)-2*H***-indazole (3f**):^[5] Reaction time = 50 min; Brown solid (86%), Mp 82– 84 °C. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} = 3429, 3063, 3031, 2927, 2852, 1660, 1578, 1562, 1475, 1346, 1147, 938, 765, 695. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 8.13 (br s, 1H), 7.83 (d, 1H, J = 8.8 Hz), 7.76 (d, 2H, J = 7.8 Hz), 7.63-7.56 (m, 1H), 7.50-7.48 (m, 1H), 7.36-7.35 (m, 2H), 7.16 (t, 1H, J = 7.6 Hz). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ = 149.4, 140.3, 133.8, 130.5, 128.9, 128.3, 126.9, 125.2, 122.5, 121.9, 120.6, 118.9, 118.0. HR-MS (ESI+) m/z calculated for [C₁₃H₁₀BrN₂]⁺ = [M+H]⁺: 285.1234; found: 285.1224

2-(2*H***-Indazol-2-yl)aniline (3g):**^[6] Reaction time = 60 min; Off white (86%), Mp 76–78 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3438$, 3330, 3056, 1615, 1516, 1502, 1464, 1385, 1349, 1314, 1248, 1193, 1144, 1048, 954, 787, 744. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.16$ (s, 1H), 7.72 (dd, 2H, J = 19.1 and J = 8.8 Hz), 7.33-7.27 (m, 2H), 7.21-7.15 (m, 1H), 7.12-7.08 (m, 1H), 6.79 (m, 2H).¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 149.5$, 141.5, 129.5, 126.8, 126.5, 125.0, 123.7, 122.2, 121.9, 120.4, 118.0, 117.5, 117.5. HR-MS (ESI+) m/z calculated for $[C_{13}H_{12}N_3]^+ = [M+H]^+$: 210.1026; found: 210.1018.

2-(Pyridin-2-yl)-2*H***-indazole (3h):**^[2] Reaction time = 50 min; Cream solid (88%), Mp 104–106 ^oC. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3396$, 3149, 3057, 3010, 2926, 1627, 1591, 1573, 1516, 1472, 1376, 1201, 1144, 1056, 954, 778, 756, 734. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 9.1$ (s, 1H), 8.49 (d, 1H, J = 3.4 Hz), 8.27 (d, 1H, J = 8.3 Hz), 7.89-7.85 (m, 1H), 7.76-7.71 (m, 2H), 7.34-7.26 (m, 2H), 7.11-7.07 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 151.8$, 150.3, 148.3, 138.9, 127.6, 122.8, 122.7, 122.4, 121.2, 120.6, 118.0, 114.1. HR-MS (ESI+) m/z calculated for $[C_{12}H_{10}N_3]^+ = [M+H]^+$: 196.0869; found: 196.0862.

2-(6-methylpyridin-2-yl)-2*H***-indazole (3i):**^[1b&2] Reaction time = 50 min; Pale yellow solid (89%), Mp 106–108 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3156$, 3051, 2925, 1627, 1603, 1570, 1518, 1474, 1428, 1374, 1329, 1207, 1072, 910, 787, 756. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 9.14$ (s, 1H), 8.07 (d, 1H, J = 8.3 Hz), 7.78-7.72 (m, 3H), 7.33 (dd, 1H, $J_a = 7.8$ and $J_b = 6.8$ Hz), 7.15-7.10 (m, 2H), 2.62 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 157.8$, 151.2, 150.2, 139.0, 127.4, 122.5, 122.3, 122.2, 122.0, 120.6, 118.0, 110.9, 24.2. HR-MS (ESI+) m/z calculated for [C₁₃H₁₂N₃]⁺ = [M+H]⁺: 210.1026; found: 210.1021.

2-Benzyl-2*H***-indazole (3j)**:^[1b&2] Reaction time = 50 min; Brown solid (94%), Mp 44–46 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{\text{max}} = 3060$, 3031, 2936, 1627, 1514, 1495, 1469, 1422, 1309, 1153, 1135, 1009, 981, 907, 838, 782, 754, 703, 643. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\text{H}} = 7.86$ (s, 1H), 7.73 (d, 1H), 7.61 (d, 1H), 7.35-7.24 (m, 6H), 7.08-7.04 (m, 1H), 5.57 (s, 2H).¹³C NMR

(CDCl₃, 100 MHz): $\delta_{\rm C} = 149.0$, 135.8, 129.0, 128.4, 128.0, 126.0, 122.9, 122.1, 121.8, 120.2, 117.6. 57.5. HR-MS (ESI+) m/z calculated for $[C_{14}H_{13}N_2]^+ = [M+H]^+$: 209.1073; found: 209.1073.

2-(4-Methoxybenzyl)-2*H***-indazole (3k):^[7] Reaction time = 50 min; Off white solid (96%), Mp 114–118 °C. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} = 3121, 2930, 2835, 1993, 1611, 1513, 1453, 1390, 1247, 1178, 1028, 814, 792, 759. ¹H NMR (CDCl₃, 400 MHz): \delta_{\rm H} = 7.83 (s, 1H), 7.72 (d, 1H, J = 8.8 Hz), 7.6 (d, 1H, J = 8.3 Hz), 7.29-7.24 (m, 3H), 7.07-7.04 (m, 1H), 6.88 (m, 2H, J = 8.8 Hz), 5.52 (s, 2H), 3.78 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): \delta_{\rm C} = 159.7, 148.9, 129.6, 127.7, 125.9, 122.5, 122.0, 121.7, 120.1, 117.5, 114.3, 57.0, 55.3. HR-MS (ESI+) m/z calculated for [C₁₅H₁₅N₂O]⁺ = [M+H]⁺: 239.1179; found: 239.1188.**

2-Cyclohexyl-2*H***-indazole (3I):**^[2] Reaction time = 50 min; Peach solid (92 %), Mp 80-82 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{\text{max}} = 3395$, 3150, 3047, 2935, 2849, 1621, 1509, 1449, 1373, 1306, 1227, 1148, 976, 895, 751, 727, 647. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\text{H}} = 7.94$ (s, 1H), 7.72 (d, 1H, J = 8.8 Hz), 7.67 (d, 1H, J = 8.8 Hz), 7.31-7.27 (m, 1H), 7.10-7.07 (m, 1H), 4.42 (tt, 1H, $J_{\text{a}} = 11.7$ Hz and $J_{\text{b}} = 3.5$ Hz), 2.29 (d, 2H, J = 10.8 Hz), 1.99-1.95 (m, 3H), 1.92-1.86 (m, 1H), 1.82-1.74 (m, 1H), 1.57-1.45 (m, 2H), 1.40-1.30 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\text{C}} = 148.2$, 125.6, 121.4, 121.4, 120.1, 117.4, 62.9, 34.0, 25.5, 25.8. HR-MS (ESI+) m/z calculated for [C₁₃H₁₇N₂]⁺ = [M+H]⁺: 201.1386; found: 201.1385.

2-(*Tert***-butyl)-2***H***-indazole (3m):^[2&8] Reaction time = 50 min; Dark brown solid (91%), Mp 115–118 °C. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} = 3395, 3150, 3037, 2935, 2846, 1621, 1519, 1446, 1373, 1250, 1227, 1148, 972, 891, 751, 713, 643. ¹H NMR (CDCl₃, 400 MHz): \delta_{\rm H} = 8.0 (s, 1H), 7.73 (d, 1H,** *J* **= 8.8 Hz), 7.62 (d, 1H,** *J* **= 8.3 Hz), 7.26-7.22 (m, 1H), 7.04-7.01 (m, 1H), 1.71 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): \delta_{\rm C} = 148.3, 125.6, 121.4, 121.3,120.2, 119.3, 117.5, 60.0, 30.2. HR-MS (ESI+) m/z calculated for [C_{11}H_{15}N_2]^+ = [M+H]^+: 175.1230; found: 175.1230.**

N,*N*-diethyl-4-(2*H*-indazol-2-yl)pentan-1-amine (3n): Reaction time = 50 min; Brown liquid (95%). IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} = 3058, 2968, 2933, 287, 2800, 1627, 1513, 1454, 1382, 1291, 1200, 1138, 1069, 972, 754, 665. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 7.92 (s, 1H), 7.71 (d, 1H, *J* = 8.3 Hz), 7.64 (d, 1H, *J* = 8.3 Hz), 7.27-7.23 (m, 1H), 7.07-7.03 (m, 1H), 4.63-4.54 (m, 1H), 2.59-2.31 (m, 6H), 2.07 (ddt, 1H, *J*_a = 19, *J*_b = 8.7 and *J*_c = 5.3 Hz), 1.93-1.84 (m, 1H), 1.64 (d, 3H, *J* = 6.8 Hz), 1.46-1.36 (m, 1H), 1.29-1.21 (m, 1H), 1.01-.93 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ = 148.4, 125.6, 121.5, 121.4, 120.8, 120.1, 117.5, 60.1, 52.4, 46.7, 35.4, 23.8, 21.9, 11.5. HR-MS (ESI+) m/z calculated for [C₁₆H₂₆N₃]⁺ = [M+H]⁺: 260.2121; found: 260.2125.

5-Bromo-2-phenyl-2*H***-indazole (30)**:^[2] Reaction time = 50 min; Cream solid (90%), Mp 126–128 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3745$, 3127, 2920, 2849, 1597, 1509, 1463, 1371,

1199, 1039, 872, 807, 753, 727. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 8.36-8.34 (m, 1H), 7.88 (d, 3H, *J* = 8.3 Hz), 7.68 (d, 1H, *J* = 9.3 Hz), 7.53 (t, 2H, *J* = 7.6 Hz), 7.44-7.37 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ = 148.3, 140.2, 130.5, 129.7, 128.3, 123.9, 122.5, 121.0, 119.9, 119.7, 116.0. HR-MS (ESI+) m/z calculated for [C₁₃H₁₀BrN₂]⁺ = [M+H]⁺: 273.0022; found: 273.0016.

2-(5-Bromo-2*H***-indazole-2-yl)aniline (3p)**: Reaction time = 60 min; Pale brown solid (87%), Mp 88–90 °C. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} = 3746, 3457, 3336, 2923, 2853, 2312, 1993, 1618, 1510, 1454, 1367, 1188, 1037, 802, 749. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 8.17 (s, 1H), 7.9 (d, 1H, *J* = 1 Hz), 7.65 (d, 1H, *J* = 8.8 Hz), 7.4 (dd, 1H, *J*_a = 9 and *J*_b = 1.7 Hz), 7.33-7.31 (m, 1H), 7.27-7.22 (m, 1H), 6.90-6.82 (m, 2H), 4.87 (br s, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ = 147.8, 141.3, 130.3, 129.7, 126.1, 124.9, 123.1, 123.0, 122.5, 119.2, 118.2, 117.6. HR-MS (ESI+) m/z calculated for [C₁₃H₁₀BrN₃]⁺ = [M+H]⁺: 288.0131; found: 288.0131.

5-Bromo-2-(pyridine-2-yl)-2*H***-indazole (3q):^[9]** Reaction time = 60 min; Yellow solid (89%), Mp 176–178 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3143$, 2921, 2851, 1621, 1592, 1502, 1431, 1368, 1194, 1056, 1035, 802, 776. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 9.05$ (s, 1H), 8.52-8.51 (m, 1H), 8.26 (d, 1H, J = 8.3 Hz), 7.93-7.88 (m, 2H), 7.64 (d, 1H, J = 8.8 Hz), 7.39-7.27 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 151.5$, 148.9, 148.4, 139.0, 131.2, 123.5, 123.2, 123.1, 120.0, 119.8, 116.8, 114.1. HR-MS (ESI+) m/z calculated for $[C_{12}H_9BrN_3]^+ = [M+H]^+$: 273.9974; found: 273.9964.

2-Benzyl-5-bromo-2*H***-indazole (3r):^[7]** Reaction time = 50 min; Brown solid (93%), Mp 52–54 ^oC. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3063$, 3031, 2934, 1730, 1500, 1454, 1342, 1141, 1039, 803, 706. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 7.82$ (s, 1H), 7.77 (d, 1H, J = 1 Hz), 7.6 (d, 1H, J = 8.8 Hz), 7.38-7.31 (m, 4H), 7.27-7.25 (m, 2H), 5.56 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 147.3$, 135.4, 129.6, 129.0, 128.6, 128.0, 123.3, 122.4, 122.3, 119.3, 115.3, 57.7. HR-MS (ESI+) m/z calculated for [C₁₄H₁₁BrN₂]⁺ = [M+H]⁺: 287.0178; found: 287.0170.

6-Bromo-2-phenyl-2*H***-indazole (3s)**: Reaction time = 50 min; Peach solid (86%), Mp 102–104 ^oC. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3126$, 3080, 3056, 1620, 1594, 1536, 1506, 1462, 1375, 1203, 1034, 920, 808, 758, 685. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.39$ (s, 1H), 7.99 (s, 1H), 7.89 (d, 2H, *J* = 7.8 Hz), 7.61-7.52 (m, 3H), 7.45-7.41 (m, 1H), 7.22 (dd, 1H, *J*_a = 9.3 and *J*_b = 1.5 Hz). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 150.4$, 140.2, 129.7, 128.2, 126.3, 121.8, 121.3, 121.0, 120.9, 120.8, 120.3. HR-MS (ESI+) m/z calculated for $[C_{13}H_{10}BrN_2]^+ = [M+H]^+$: 273.0022; found: 273.0011.

2-(6-Bromo-2*H***-indazol-2-yl)aniline (3t**): Reaction time = 60 min; Pale yellow solid (84%), Mp 176–178 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{\text{max}} = 3457$, 3336, 2923, 2853, 2312, 1993, 1618, 1510, 1454, 1367, 1188, 1037, 802, 749. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\text{H}} = 8.2$ (s, 1H), 7.95 (s, 1H), 7.62 (d, 1H, J = 8.8 Hz), 7.33-7.22 (m, 4H), 6.96-6.80 (m, 2H), 4.86 (br s, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\text{C}} = 150.1$, 148.5, 141.3, 129.7, 127.7, 126.2, 126.2, 124.9, 121.8,

120.8, 120.4, 119.9, 119.6, 118.2, 117.9, 110.7. HR-MS (ESI+) m/z calculated for $[C_{13}H_{10}BrN_3]^+$ = $[M+H]^+$: 288.0131; found: 288.0131.

6-Bromo-2-(4-methoxybenzyl)-2*H***-indazole (3u)**: Reaction time = 50 min; Pale yellow solid (90%), Mp 88–90 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3124$, 2933, 2835, 1612, 1513, 1248, 1176, 1035, 911, 807, 735, 593. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 7.9$ (s, 1H), 7.82 (s, 1H), 7.48 (d, 1H, J = 8.8 Hz), 7.26 (d, 2H, J = 8.8 Hz), 7.14 (dd, 1H, $J_{\rm a} = 8.8$ and $J_{\rm b} = 1.5$ Hz), 6.9 (d, 2H, J = 8.3 Hz), 5.5 (s, 2H), 3.8 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 159.8$, 149.6, 129.7, 127.3, 125.4, 123.0, 121.6, 120.6, 120.0, 114.4, 57.1, 55.3. HR-MS (ESI+) m/z calculated for [C₁₅H₁₄BrN₂O]⁺ = [M+H]⁺: 317.0284; found: 317.0275.

6-Bromo-2-(6-methylpyridin-2-yl)-2*H***-indazole (3v)**: Reaction time = 70 min; Cream solid (87%), Mp 110–112 °C.IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3164$, 3040, 2918, 1621, 1630, 1577, 1497, 1477, 1455, 1371, 1266, 1209, 1077, 1034, 989, 922, 844, 790, ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 9.12$ (s, 1H), 8.04 (d, 1H, J = 8.3 Hz), 7.94 (s, 1H), 7.78 (t, 1H, J = 7.8 Hz), 7.6 (d, 1H, J = 8.8 Hz), J = 7.17 (d, 2H, J = 7.3 Hz), 2.62 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 157.9$, 150.9, 150.7, 139.0, 126.4, 122.6, 122.5, 121.5, 121.1, 120.8, 120.4, 110.9, 24.24. HR-MS (ESI+) m/z calculated for [C₁₃H₁₁BrN₃]⁺ = [M+H]⁺: 288.0131; found: 288.0130.

2-(4-methoxybenzyl)-2*H***-benzo[***g***]indazole (3***w***): Reaction time = 90 min; Brown solid (75%), Mp 110–112 °C. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} = 3050, 2930, 2835, 1612, 1512, 1460, 1247, 1177, 1032, 955, 813, 746, 697. ¹H NMR (CDCl₃, 400 MHz): \delta_{\rm H} = 8.59 (d, 1H,** *J* **= 7.8 Hz), 7.79-7.75 (m, 2H), 7.58-7.49 (m, 2H), 7.46 (d, 1H,** *J* **= 9.3 Hz), 7.33 (d, 1H,** *J* **= 8.8 Hz), 7.25 (d, 2H,** *J* **= 8.8 Hz), 6.87 (d, 2H,** *J* **= 8.8 Hz), 5.55 (s, 2H), 3.77 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): \delta_{\rm C} = 159.6, 146.3, 132.4, 129.6, 128.3, 128.1, 126.5, 125.5, 123.6, 123.5, 122.3, 119.1, 118.4, 114.3, 56.7, 55.3. HR-MS (ESI+) m/z calculated for [C₁₉H₁₇N₂O]⁺ = [M+H]⁺: 289.1335; found: 289.1329.**

2-Benzyl-2*H***-benzo[***g***]indazole (3x): Reaction time = 100 min; Olive green solid (68 %), Mp 50–52 °C. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} = 3481, 3308, 3052, 3030, 2929, 1651, 1613, 1546, 1456, 1426, 1326, 1143, 1101, 812, 739, 696,562. ¹H NMR (CDCl₃, 400 MHz): \delta_{\rm H} = 8.61 (d, 1H,** *J* **= 7.8 Hz), 7.81-7.79 (m, 2H), 7.60-7.52 (m, 2H), 7.51-7.45 (m, 1H), 7.37-7.31 (m, 4H), 7.29-7.24 (m, 2H), 5.63 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): \delta_{\rm C} = 146.4, 136.2, 132.2, 129.6, 128.9, 128.6, 128.3, 128.2, 127.9, 126.5, 125.6, 123.9, 123.7, 122.4, 121.8, 119.1, 118.4, 116.1, 57.2. HR-MS (ESI+) m/z calculated for [C₁₈H₁₅N₂]⁺ = [M+H]⁺: 259.1230; found: 259.12403.**

Isolated intermediate (5) and its spectral data:

6-(**2**-methoxyphenyl)-5,6-dihydroindazolo[2,3-*a*]quinoxaline (5): lemon yellow solid (99%), Mp 48–50 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3271$, 3064, 2935, 2835, 1602, 1583, 1494, 1464, 1359, 1250, 1102, 744, 677. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.16$ (d, 1H, J = 7.8Hz), 7.77 (d, 1H, J = 8.8 Hz), 7.29-7.25 (m, 2H), 7.2 (d, 1H, J = 8.8 Hz), 7.06 (td, 1H, $J_a = 7.7$ and $J_b = 1.2$ Hz), 6.96-6.86 (m, 3H), 6.80-6.74 (m, 2H), 6.68 (d, J = 7.3 Hz), 6.61 (s, 1H), 4.78 (br.s, 1H), 3.92 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 156.3$, 149.4, 136.5, 129.6, 128.9, 128.4, 128.1, 127.8, 126.8, 124.7, 121.6, 120.9, 119.5, 119.1, 119.0, 117.5, 117.4, 114.8, 110.6, 55.5, 49.2. HR-MS (ESI+) m/z calculated for $[C_{21}H_{18}N_3O]^+ = [M+H]^+$: 328.1444; found: 328.1432.

6-(2-Methoxyphenyl)indazolo[2,3-*a*]**quinoxaline** (**6a**): Yellow color solid (96%), Mp 140-144 ^oC. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3064$, 2929, 2836, 1602, 1581, 1465, 1359, 1250, 1161, 1024, 952, 745, 677. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.9$ (dd, 1H, $J_a = 8.3$ and $J_b = 1$ Hz), 8.3 (dd, 1H, $J_a = 7.8$ and $J_b = 1$ Hz), 8.07 (s, 1H), 7.82-7.81 (m, 2H), 7.61-7.56 (m, 3H), 7.27-7.15 (m, 4H), 3.36 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 157.4$, 152.2, 149.2, 138.2, 131.5, 130.4, 129.1, 128.1, 128.0, 126.8, 123.0, 121.3, 120.8, 117.6, 117.2, 116.4, 111.2, 55.5. HR-MS (ESI+) m/z calculated for [C₂₁H₁₆N₃O]⁺ = [M+H]⁺: 326.1288; found: 326.1292.

6-(3,4-Dimethoxyphenyl)indazolo[**2,3**-*a*]**quinoxaline (6b)**: Off white solid (96%), Mp 168-170 ^oC. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3064$, 2993, 2835, 1603, 1578, 1502, 1432, 1260, 1138, 1025, 950, 760, 674. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.80$ (d, 1H, J = 7.8 Hz), 8.19 (d, 1H, J = 7.3 Hz), 8.00 (d, 1H, J = 8.3 Hz), 7.72-7.65 (m, 3H), 7.52-7.47 (m, 3H), 7.20-7.17 (m, 1H), 7.09 (d, 1H, J = 8.3 Hz), 4.01 (s, 3H), 3.96 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 153.7$, 150.8, 149.2, 138.0, 130.4, 129.7, 128.8, 128.1, 128.0, 127.7, 125.7, 122.9, 121.9, 121.4, 117.4, 117.2, 116.4, 111.9, 111.1, 56.1, 56.0. HR-MS (ESI+) m/z calculated for [C₂₂H₁₈N₃O₂]⁺ = [M+H]⁺: 356.1394; found: 356.1396.

6-(Benzo[*d*][1,3]dioxol-5-yl)indazolo[2,3-*a*]quinoxaline (6c): Pale yellow solid (97%), Mp 216-218 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3065$, 2955, 2923, 2853, 1607, 1577, 1499, 1445, 1358, 1247, 1038, 933, 739, 673. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.86$ (dd, 1H, $J_a = 8.3$ and $J_b = 1.5$ Hz), 8.23 (dd, 1H, $J_a = 7.6$ and $J_b = 1.2$ Hz), 8.07 (d, 1H, J = 8.8 Hz), 7.80-7.73 (m, 3H), 7.58 (t, 1H, J = 7.6 Hz), 7.48-7.43 (m, 2H), 7.29-7.25 (m, 1H), 7.07 (d, 1H, J = 7.8 Hz), 6.13 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 153.8$, 149.9, 149.6, 148.5, 138.3, 132.0, 130.1, 129.2, 128.5, 128.4, 128.0, 126.0, 123.6, 123.4, 121.6, 109.7, 108.9, 101.9. HR-MS (ESI+) m/z calculated for [C₂₁H₁₄N₃O₂]⁺ = [M+H]⁺: 340.1081; found: 340.1081.

6-(4-Isopropylphenyl)indazolo[**2**,**3**-*a*]**quinoxaline** (**6d**): Pale yellow solid (95%), Mp 172-174 ^oC. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3063$, 2958, 2868, 1609, 1577, 1478, 1358, 1227, 1105, 954, 831, 759, 744. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.84$ (d, 1H, J = 7.3 Hz), 8.23 (d, 1H, J = 7.8 Hz), 8.03 (d, 1H, J = 8.3 Hz), 2.07 (d, 2H, J = 8.3 Hz), 7.75- 7.69 (m, 3H), 7.54-7.49 (m, 3H), 7.21 (t, 1H, J = 7.1 Hz), 3.09 (dt, 1H, $J_a = 13.7$ and $J_b = 6.8$ Hz), 1.39 (d, 6H, J = 6.8 Hz). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 154.2$, 151.3, 149.3, 138.1, 135.8, 129.9, 128.9, 128.1, 128.0, 127.7, 127.0, 125.8, 123.0, 121.4, 117.4, 117.2, 116.4, 34.3, 24.0. HR-MS (ESI+) m/z calculated for [C₂₃H₂₀N₃]⁺ = [M+H]⁺: 338.1652; found: 338.1643.

6-(4-Chlorophenyl)indazolo[2,3-*a***]quinoxaline (6e)**: Off white solid (92%), Mp 168-170 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3396$, 2954, 2922, 2852, 1659, 1550, 1478, 1360, 1227, 1160, 1091, 950, 830, 758, 739. ¹H NMR (CDCl₃, 400 MHz): $\delta_{H} = 8.86$ (dd, 1H, $J_a = 8.3$ and $J_b = 1.5$ Hz), 8.82 (dd, 1H, $J_a = 8.1$ and $J_b = 1.2$ Hz), 8.05 (d, 1H, J = 8.8 Hz), 7.88 (d, 2H, J = 8.3 Hz), 7.80-7.71 (m, 2H), 7.63-7.60 (m, 3H), 7.58-7.54 (m, 1H), 7.27-7.23 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{C} = 152.8,149.3, 138.0, 136.4, 130.3, 129.9, 129.3, 129.2, 128.3, 128.2, 127.8, 125.5, 123.4, 121.0, 117.6, 117.0, 116.5. HR-MS (ESI+) m/z calculated for [C₂₀H₁₃ClN₃]⁺ = [M+H]⁺: 330.0793; found: 330.0793.$

6-(2-Nitophenyl)indazolo[2,3-*a***]quinoxaline (6f)**: Light brown solid (89%), Mp 178-180 °C.IR (MIR-ATR, 4000–600 cm⁻¹): $v_{\text{max}} = 3065$, 2923, 2853, 1608, 1526, 1429, 1345, 1228, 1160, 1088, 950, 757, 742, 704. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\text{H}} = 8.89$ (d, 1H, J = 8.3 Hz), 8.38 (d, 1H, J = 8.3 Hz), 8.2 (d, 1H, J=7.8 Hz), 8.06 (d, 1H, J = 8.8 Hz), 7.91-7.88 (m, 1H), 7.84-7.72 (m, 4H), 7.54 (t, 1H, J = 7.6 Hz), 7.17 (t, 1H, J = 7.3 Hz), 7.02 (d, 1H, J = 8.3 Hz).¹³C NMR (CDCl₃, 100 MHz): $\delta_{\text{C}} = 150.7$, 149.2, 148.0, 137.8, 132.9, 131.4, 130.9, 130.0, 129.7, 128.3, 128.1, 125.6, 125.3, 123.7, 119.5, 117.7, 116.9, 116.5. HR-MS (ESI+) m/z calculated for [C₂₀H₁₃N₄O₂]⁺ = [M+H]⁺: 341.1033; found: 341.1038.

6-(5-Bromo-2-fluorophenyl)indazolo[2,3-*a***]quinoxaline (6g)**: Lemon yellow solid (86%), Mp 214-217 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3066$, 2920, 2851, 1607, 1575, 1477, 1358, 1210, 1102, 961, 812, 757, 742, 685. ¹H NMR (CDCl₃, 400 MHz): $\delta_{H} = 8.86$ (d, 1H, J = 8.3 Hz), 8.24 (dd, 1H, J = 8.3 Hz), 8.05 (d, 1H, J = 8.3 Hz), 7.90 (dd, 1H, $J_a = 5.9$ and $J_b = 2.4$ Hz), 7.83-7.79 (m, 1H), 7.76-7.71 (m, 2H), 7.57 (t, 1H, J = 7.6 Hz), 7.39 (d, 1H, J = 8.3 Hz), 7.27-7.24 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{C} = 160.6$, 158.1, 149.2, 147.3, 137.8, 134.9, 133.9, 133.8, 130.1, 129.8, 128.4, 128.3, 127.7, 127.6, 125.9, 123.7, 120.2, 120.1, 118.3, 118.1, 117.6, 117.5, 117.0, 116.5. HR-MS (ESI+) m/z calculated for $[C_{20}H_{12}BrFN_3]^+ = [M+H]^+$: 392.0193; found: 392.0197.

1-Methyl-6-(4-nitrophenyl)indazolo[2,3-*a***]quinoxaline (6h)**: Golden yellow (89%), Mp 236-238 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3020$, 2921, 1624, 1529, 1415, 1345, 1297, 1128, 935, 746, 687. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.83$ (d, 1H, J = 7.3 Hz), 8.48 (d, 1H, J = 8.3 Hz), 7.98-7.89 (m, 3H), 7.80-7.70 (m, 3H), 7.26-7.24 (m, 1H), 6.97 (t, 1H, J = 7.8 Hz), 6.08 (d, 1H, J = 8.3 Hz), 2.82 (s, 3H).¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 147.1$, 146.8, 145.3, 143.8, 142.1, 135.0, 131.8, 131.7, 131.2, 130.6, 129.9, 128.5, 128.4, 128.1, 126.0, 125.4, 124.5, 122.9, 118.9, 109.5, 17.1. HR-MS (ESI+) m/z calculated for $[C_{21}H_{15}N_4O_2]^+ = 355.1190$ [M+H]⁺; found: 355.1183.

9-Bromo-6-(2-methoxyphenyl)indazolo[2,3-*a***]quinoxaline (6i)**: Yellow solid (90%), Mp 180-182 °C. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max} = 3067$, 2998, 2955, 1600, 1580, 1462, 1279, 1247, 1103, 1024, 931, 751, 682. ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.85$ (dd, 1H, $J_{\rm a} = 8.3$ and $J_{\rm b} =$ 1Hz), 8.29 (dd, 1H, $J_{\rm a} = 7.8$ and $J_{\rm b} = 1$ Hz), 7.92 (d, 1H, J = 9.3 Hz), 7.84-7.74 (m, 2H), 7.66-7.59 (m, 3H), 7.35 (d, 1H, J = 1.5 Hz), 7.26-7.22 (m, 1H), 7.18 (d, 1H, J = 8.3 Hz), 3.32 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C} = 157.2$, 152.0, 147.5, 138.3, 131.9, 131.5, 130.5, 130.2, 129.3, 128.4, 127.9, 126.4, 126.1, 123.3, 121.5, 118.8, 118.7, 116.4, 116.3, 111.2, 55.5. HR-MS (ESI+) m/z calculated for [C₂₁H₁₅BrN₃O]⁺ = [M+H]⁺: 404.0393; found: 404.0398. Copies of ¹H, ¹³C NMR Spectra of all Compounds (S3, S4, 3a-w, 5 and 6a-i):

S25

 ^{13}C NMR (100 MHz) spectrum of compound 3c in CDCl_3

S35

¹³C NMR (100 MHz) spectrum of compound **3l** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **30** in CDCl₃

 13 C NMR (100 MHz) spectrum of compound **3p** in CDCl₃

¹H NMR (400 MHz) spectrum of compound 3t in CDCl₃

 13 C NMR (100 MHz) spectrum of compound **3t** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **3x** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **3x** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound **6f** in CDCl₃

References:

- (*a*) M. Shen and T. G. Driver, *Org Lett*, 2010, **12**, 2884; (*b*) J. Hu, Y. Cheng, Y. Yang, and Y. Rao, *Chem.Commun.*, 2011, **47**, 10133.
- 2. N. E. Genung, L. Wei, and G. E. Aspnes, *Org. Lett.*, 2014, **16**, 3114; (*b*) M. R. Kumar, A. Park, N. Park, and S. Lee, *Org. Lett.*, 2011, **13**, 3542.
- 3 A. G. Erik, D. M. Theresa, F. K. James, G-P. Angel, L. E. Cheng Yin, P. J. Allen, S. B. Dawson, T. M. Mike., Appl. Publ. (2012), US 20120202834 A1 20120809.
- 4. A. Taher, S. Ladwa, S. Thirumalai Rajan, and G. W. Weaver, *Tetrahedron Letters*, 2000, **41**, 9893.
- A. H. Moustafa, C. C. Malakar, N. Aljaar, E. Merisor, J. Conrad, U. Beifuss, Synlett, 2013, 24, 1573
- 6. J. C. Antilla, J. M. Baskin, T. E. Barder, and S. L. Buchwald, J. Org. Chem., 2004, 69, 5578.
- D. J. Slade, N. F. Pelz, W. Bodnar, J. W. Lampe, and P. S. Watson, J. Org. Chem., 2009, 74, 6331.
- 8. M. Akazome, T. Kondo, and Y. Watanabe, J. Org. Chem., 1994, 59, 3375.
- 9. H. L. Gaetan, J. B. Michael, C. W. Wai, B. Donald, PCT Int.

Appl. (2003), WO 2003027094 A2 20030403.