Electronic Supporting Informations

Solvatochromic studies of pull-push molecules containing dimethylaniline

and aromatic hydrocarbon linked by acetylene unit

Irena Bylińska, Małgorzata Wierzbicka, Cezary Czaplewski, Wiesław Wiczk*

Faculty of Chemistry, University of Gdańsk

80-308 Gdańsk, Wita Stwosza 63, Poland

	Solvent	n ^{1,2}	ε ^{,2,3}	$E_T^{N \ 1,2,4}$	α ^{2,3,5}	β	π*	SP ⁶	SdP	SB	SA
1	МеОН	1.3306	32.63	0.762	0.98	0.66	0.6	0.86	0.9	0.55	0.61
2	E+OH	1 359/	24 55	0.654	0.86	0.75	0.54	0.85	0.78	0.66	0.4
2	LION	1.5594	24.55	0.034	0.00	0.75	0.34	0.05	0.78	0.00	0.4
3	iso-propyl alcohol (iPrOH)	1.38126	18.3	0.546	0.76	0.84	0.48	0.85	0.81	0.83	0.28
4	2,2,2-trifluoroethanol (TFE)	1.291	26.67	0.898	1.51	0	0.73	0.91	0.92	0.11	0.89
5	hexafluoro-2-propanol (HFiP)	1.277	16.62	1.07	1.96	0	0.65	1.014		0.014	1.01
6	n-hexane	1.3726	1.89	0.01	0	0	-0.011	0.519	0	0.056	0
7	iso-octane	1.3914	1.843	0.01	0	0	0.01	0.54	0	0.08	0
8	n-hexadecane	1.4345	2.05	0.009	0	0	0.03	0.578	0	0.086	0
9	squalane (SQ)	1.453	2.23						0	0.05	0
10	cyclohexane	1.4263	2.023	0.006	0	0	0	0.56	0	0.07	0
11	toluene	1.49718	2.38	0.099	0	0.11	0.54	0.68	0.28	0.13	0
12	1-chloro-n-propane	1.388	8.59	0.207							
13	1-chloro-n-butane	1.4	7.39	0.19	0	0	0.39	0.84	0.529	0.138	0
14	1-chloro-n-hexane	1.419	6.1								
15	1-chloro-n-octane	1.43	5.1								
16	1-chloro-n-decane	1.438	4.58								
17	1-chloro-n-hexadecane	1.45	3.7								
18	acetone	1.3588	20.7	0.355	0.08	0.48	0.62	0.881	0.91	0.475	0
19	acetonitrile	1.34596	37.5	0.46	0.19	0.4	0.66	0.895	0.97	0.286	0.044
20	1,4-dioxane	1.422	2.235	0.164	0	0.37	0.55	0.7	0.31	0.44	0
21	tetrahydrofuran (THF)	1.407	7.6	0.207	0	0.55	0.58	0.84	0.63	0.59	0
22	2-methyl-tetrahydrofuran (MeTHF)	1.4051	5.26	0.179	0	0.45	0.48	0.717	0.77	0.584	0
23	Diethyl eter (Et ₂ O)	1.3526	4.2	0.117	0	0.47	0.24	0.694	0.39	0.562	0
24	Ethyl acetate (AcOEt)	1.3726	6.11	0.228	0	0.45	0.55	0.8	0.6	0.54	0
25	N,N-dimethylformamide (DMF)	1.431	37	0.386	0	0.69	0.88	0.954	0.98	0.613	0.031
26	Dimethyl sulfoxide (DMSO)	1.479	46.7	0.444	0	0.76	1	1	1	0.647	0.072

Table 1 ESI Solvent properties (n-refractive index, ε - electric permittivity and Kamlet-Taft (α , β , π^*) and Catalan (SP, SdP, SB,SA) empirical solvent parameters.

¹ P.J. Cerón-Carrascoa, D. Jacquemin, C. Laurence, A. Planchat, C. Reichardt, K. Sraïdi, J. Phys. Org. Chem., 2014, 27, 512

² E. Krystkowiak, A. Maciejewski, Phys. Chem. Chem. Phys., 2011, **13**, 11317

- ³Z. Pawlowska, A. Lietard, S. Aloïse, M. Sliwa, A. Idrissi, O. Poizat, G. Buntinx, S. Delbaere, A. Perrier, F. Maurel, P. Jacques,
- J. Abe, Phys. Chem. Chem. Phys., 2011, 13, 13185
- ⁴ C. Reichardt, Chem. Rev., 1994, **94**, 2319
- ⁵ A. de Juan, G. Fonrodona, E. Casassas, Trends in analytical chemistry, 1997, **16**, 52
- ⁶ J. Catalàn, J. Phys. Chem. B., 2009, **113**, 5951

	hw [cm ⁻¹]	
solvent	1NacDMA	2NacDMA
HFiP	4800	5700
TFE	5300	6400
MeOH	4900	4950
EtOH	4450	4700
iPrOH	4450	4700

Table 2 ESI. Half-width of emission spectra of 1NacDMA and 2NacDMA in protic solvents.

Table 3 ESI Intercept, slope and coefficient of the quality of fit (r^2) estimated from the dependence of a given photophysical parameter on solvent polarity index E^{N}_{T} for compounds studied. N.p. denote number of solvents used for a linear correlation.

quantity	intercept	slope	r ²	N.p.
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
v _{abs} ^{max} [cm ⁻¹]	28838±96	-2584±398	0.7509	16
max [area-1]	26370±229	-15208±934	0.9489	16
V _{fluo} [Cm]	24716±418	-4921±63	0.9837	3(protic)
$\Delta v = v_{abs}^{max} - v_{fluo}^{max}$	2468±187	12624±771	0.9748	16
[cm ⁻¹]	4002±384	4699±528	0.9755	4 (protic)
ф	0.91±0.05	-1.05±0.2	0.6581	16
τ [ns]	0.93±1.62	-5.02±0.6	0.8002	16
k _f *10 ⁻⁸ [s ⁻¹]	7.28±0.37	-14.4±1.5	0.8617	16
k _{nr} *10 ⁻⁸ [s ⁻¹]	1.03±0.38	2.55±1.59	0.1560	16
μ*10 ⁵ [cm ³ /s]	2.05±0.06	-2.62±0.23	0.9062	15
	quantityinterceptslope r^2 N.p.NacDMA $v_{abs}^{max} [cm^{-1}]$ 28838±96-2584±3980.750916 $v_{bo}^{max} [cm^{-1}]$ 26370±229-15208±9340.94891624716±418-4921±630.98373(protic) $vv v_{abs}^{max} - v_{ho}^{max}}$ 2468±18712624±7710.974816[cm^{-1}]4002±3844699±5280.97554 (protic) ϕ 0.91±0.05-1.05±0.20.658116 τ [ns]0.93±1.62-5.02±0.60.800216 $k'_{10}^*10^*$ [s ⁻¹]7.28±0.37-14.4±1.50.861716 μ^*10^5 [cm ³]1.03±0.382.55±1.590.156016 μ^*10^5 [cm ³]2.05±0.06-2.62±0.230.906215Value ^{max} [cm ⁻¹]27206±66435±1920.230919Value ^{max} [cm ⁻¹]27205±237-16124±9790.95091625710±665-5227±10080.96423 (protic) $v=v_{ab}^{max} v_{ho}^{max}$ 1161±2761651±±11370.937816[cm ⁻¹]1158±10457862±14380.94424 (protic) ϕ 0.74±0.175.08±0.710.786116 $v_{ab}^{max} v_{ho}^{max} [cm-1]22783±57257±1650.125417Valuemax [cm-1]2283±57257±1650.125416v_{ab}^{max} v_{ho}^{max} [cm-1]22783±57257±1650.125416v_{ab}^{max} v_{ho}^{max$			
v _{abs} ^{max} [cm ⁻¹]	27206±66	435±192	0.2309	19
max r11	27050±237	-16124±979	0.9509	16
V _{fluo} [CM]	25710±665	-5227±1008	0.9642	3 (protic)
$\Delta v = v_{abs}^{max} - v_{fluo}^{max}$	1161±276	16512±1137	0.9378	16
[cm ⁻¹]	1158±1045	7862±1438	0.9442	4 (protic)
φ	0.870±0.048	-0.708±0.199	0.4749	16
τ [ns]	0.74±0.17	5.08±0.71	0.7861	16
k _f *10 ⁻⁸ [s ⁻¹]	8.11±0.37	-14.9±1.5	0.8724	16
k _{nr} *10 ⁻⁸ [s ⁻¹]	1.48±0.37	0.73±1.52	0.0163	16
μ *10 ⁵ [cm ³ /s]	2.69±0.16	-3.79±0.56	0.8224	12
		AacDMA		·
v _{abs} ^{max} [cm ⁻¹]	22783±57	257±165	0.1254	17
max [area-1]	21993±181	-12778±747	0.9544	16
V _{fluo} [Cm]	20657±373	-3829±513	0.9653	4 (protic)
$\Delta v = v_{abs}^{max} - v_{fluo}^{max}$	854±181	12588±747	0.9530	16
[cm ⁻¹]	924±637	6182±876	0.9614	4 (protic)
	0.76±0.06	-0.76±0.23	0.4354	16
Ψ	1.43±0.07	-1.63±0.10	0.9899	4 (protic)
T [nc]	3.09±0.18	2.77±0.76	0.4857	16
t [lis]	8.90±0.03	-9.00±0.04	0.9999	3 (protic)
k *10 ⁻⁸ [c ⁻¹]	2.41±0.08	-3.42±0.35	0.8736	16
K _f IU [S]	2.95±0.02	-2.65±0.03	0.9998	3 (protic)
k _{nr} *10 ⁻⁸ [s ⁻¹]	8.97±1.91	9.98±7.91	0.1021	16
$11 * 10^{5} [cm^{3}/c]$	1.00±0.04	-1.43±0.15	0.8601	16
	1.19±0.03	-0.99±0.04	0.9984	3 (protic)

Fig. 1 ESI Fluorescence spectra of 1NacDMA, 2NacDMA and AacDMA measured in TFE and acidified TFE (3 ml TFE+1 μ l concentrated HCl)

Fig. 2 ESI Fluorescence spectra of 1NacDMA, 2NacDMA and AacDMA measured in acidified TFE (3 ml TFE+1 μ l concentrated HCl) and HFiP.

Fig. 3 ESI Plot of the correlation of v_{abs}^{max} versus E_T^N for 1NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 4 ESI Plot of the correlation of v_{abs}^{max} versus E_T^N for 2NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 5 ESI Fig. 4 ESI Plot of the correlation of v_{abs}^{max} versus E_T^N for AacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 6 ESI Plot of the correlation of v_{fluo}^{max} versus E_T^N for 1NacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 7 ESI Plot of the correlation of v_{fluo}^{max} versus E_T^N for 2NacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 8 ESI Plot of the correlation of v_{fluo}^{max} versus E_T^N for AacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 9 ESI Plot of the correlation of $v_{abs}^{max} - v_{fluo}^{max}$ versus E_T^N for 1NacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 10 ESI Plot of the correlation of $v_{abs}^{max} - v_{fluo}^{max}$ versus E_T^N for 2NacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 11 ESI Plot of the correlation of $v_{abs}^{max} - v_{fluo}^{max}$ versus E_T^N for AacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 12 ESI Plot of the correlation of fluorescence quantum yields (Φ) versus E_T^N for 1NacDMA.. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 13 ESI Plot of the correlation of fluorescence quantum yields (Φ) versus E_T^N for 2NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 14 ESI Plot of the correlation of fluorescence quantum yields (Φ) versus E_T^N for AacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 15 ESI Plot of the correlation of fluorescence lifetimes (τ) versus E_T^N for 1NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 16 ESI Plot of the correlation of fluorescence lifetimes (τ) versus E_T^N for 2NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 17 ESI Plot of the correlation of fluorescence lifetimes (τ) versus E_T^N for AacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 18 ESI Plot of the correlation of fluorescence rate constants (k_f) versus E_T^N for 1NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 19 ESI Plot of the correlation of fluorescence rate constants (k_f) versus E_T^N for 2NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 20 ESI Plot of the correlation of fluorescence rate constants (k_f) versus E_T^N for AacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 21 ESI Plot of the correlation of non-radiative rate constants (k_{nr}) versus E_T^N for 1NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 22 ESI Plot of the correlation of non-radiative rate constants (k_{nr}) versus E_T^N for 2NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 23 ESI Plot of the correlation non-radiative rate constants (k_{nr}) versus E_T^N for AacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 24 ESI Plot of the correlation of transition dipole moments (μ) versus E_T^N for 1NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 25 ESI Plot of the correlation of transition dipole moments (μ) versus E_T^N for 2NacDMA. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 26 ESI Plot of the correlation of transition dipole moments (μ) versus E_T^N for AacDMA. Solid line for aprotic solvents, dashed line for protic solvents. The red points were not taken into account in the correlation. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Table 4 ESI Estimated from eqn (5) adjusted coefficients $(v_x)_0$, a_{SP} , b_{SdP} , c_{SB} , d_{SA} their standard error and correlation coefficient (r^2) of the multiple linear correlation analysis of absorption (v_{abs}) , fluorescence (v_{fluo}) wavenumber, Stokes shift (Δv_{SS}) , fluorescence quantum yield (φ) , fluorescence (k_f) and nonradiative (k_{nr}) rate constant and value proportional to squared transition dipole moment $(\mu^2) \sim k_f / (n^2 v_{fluo}^3)$ of 1NacDMA as a function of Catalan-four parameter solvent scale. N.p. denote number of solvent using in the analysis.

	(V _x) ₀	a _{SP}	b _{SdP}	C _{SB}	d _{SA}	r ²	N.p.
V _{abs} [cm ⁻¹]	31672±378	-4198±553	-786±123	-135±161	379±175	0.9471	20
	31660±374	-4195±548	-859±86	-	775±168	0.9446	20
V _{fluo} [cm ⁻¹]	29613±2226	-4320±3256	-5166±728	1940±947	1755±1029	0.9229	20
Δv_{SS} [cm ⁻¹]	2964±1898	122±2276	4380±620	1805±808	-1016±877	0.9242	20
	2145±255	-	4385±589	1805±782	-1040±669	0.9241	20
φ	0.38±0.29	0.90±0.42	-0.26±0.09	-0.47±0.12	-0.68±0.13	0.9350	20
т [ns]	-2.34±1.57	5.10±2.30	2.17±0.55	-0.94±0.85	-4.26±1.42	0.7761	18
	-2.48±1.58	5.15±2,32	1.73±0.32	-	-4.86±1.33	0.7551	18
k _f *10 ⁸ [s⁻¹]	8.24±2.30	-0.65±3.37	-4.93±0.80	-2.26±1.24	2,02±2.07	0.9229	18
	7,72±0.32	-	-5.02±0.76	-1.71±1.11	-	0.9155	18
	7.53±3.04	-	-5.95±0.49	-	-	0.9022	18
k _{nr} *10 ⁸ [s⁻¹]	11.67±6.80	-15.99±9.94	-2.76±2.37	3.70±3.67	89.90±6.12	0.9655	18
	12.99±6.53	-17.90±9.35	-	-	90.54±5.00	0.9618	18
μ ² *10 ⁵	2.88±1.06	-1.07±1.54	-0.84±0.37	-0.30±0.57	0.63±0.95	0.6099	18
[cm ³ /s]	2.12±0.13	-	-0.96±0.21	-	-	0.5685	18

Table 5 ESI Estimated from eqn (5) adjusted coefficients $(v_x)_0$, a_{SP} , b_{SdP} , c_{SB} , d_{SA} their standard error and correlation coefficient (r^2) of the multiple linear correlation analysis of absorption (v_{abs}) , fluorescence (v_{fluo}) wavenumber, Stokes shift (Δv_{SS}) , fluorescence quantum yield (φ) , fluorescence (k_f) and nonradiative (k_{nr}) rate constant and value proportional to squared transition dipole moment $(\mu^2)^{\sim}k_f/(n^2 v_{fluo}^3)$ of 2NacDMA as a function of Catalan-four parameter solvent scale. N.p. denote number of solvent using in the analysis.

	(V _x) ₀	a _{SP}	b _{SdP}	C _{SB}	d _{SA}	r ²	N.p.
V _{abs} [cm ⁻¹]	299099±1065	-2474±155	636±348	-766±453	1148±492	0.7214	20
v _{fluo} [cm ⁻¹]	29588±1531	-3646±2214	-64941±495	327±644	-277±699	0.9682	20
	29129±1136	-2900±1637	-6412±287	-	-	0.9671	20
Δv_{SS} [cm ⁻¹]	320±2063	1171±3018	7130±675	-1094±878	1426±954	0.9525	20
	11131±279	-	71841±642	-1096±854	1198±730	0.9520	20
Φ	-0.23±0.26	1.73±0.39	-0.19±0.09	-0.42±0.11	-0.63±0.11	0.9428	20
т [ns]	-2.40±1.67	4.95±2.44	2.29±0.58	-1.17±0.90	-3.81±1.50	0.7497	18
	-2.57±1.70	5.00±2.50	1.73±0.40	-	-4.53±1.43	0.7171	18
k _f *10 ⁸ [s⁻¹]	4.84±3.94	5.29±5.75	-6.45±1.37	-2.03±2.12	1,07±3.54	0.8170	18
	8.42±4.76	-	-6.23±0.77	-	-	0.8061	18
k _{nr} *10 ⁹ [s ⁻¹]	2.02±1.03	-2.74±1.50	-0.43±0.36	0.32±0.56	13.58±0.93	0.9643	18
	2.07±1.47	-2,75±1,47	-0.28±0.23	-	13.78±0.08	0.9634	18
	2.29±1.00	-3.24±1.34	-	-	13.40±0.08	0.9597	18
μ ² *10 ⁵	1.98±1.44	0.19±2.10	-1.21±0.50	-0.82±0.78	-0.48±1.30	0.3929	18
[cm ³ /s]	2.20±0.28	-	-0.81±0.28	-	-	0.3399	18
	0.39±1.09	2.58±1.59	-0.48±0.40	-0.18±0.56	-12.65±5.54	0.6939	16 [*]
	0.43±1.04	2.49±1.51	0.58±0.25	-	-12.15±5.12	0,6909	16

Table 6 ESI Estimated from eqn (5) adjusted coefficients $(v_x)_0$, a_{SP} , b_{SdP} , c_{SB} , d_{SA} their standard error and correlation coefficient (r^2) of the multiple linear correlation analysis of absorption (v_{abs}) , fluorescence (v_{fluo}) wavenumber, Stokes shift (Δv_{SS}) , fluorescence quantum yield (φ) , fluorescence (k_f) and nonradiative (k_{nr}) rate constant and value proportional to squared transition dipole moment $(\mu^2)^{\sim}k_f/(n^2 v_{fluo}^3)$ of AacDMA as a function of Catalan-four parameter solvent scale. N.p. denote number of solvent using in the analysis.

	(V _x) ₀	a _{SP}	b _{SdP}	C _{SB}	d _{SA}	r²	N.p.
V _{abs} [cm ⁻¹]	24476±371	-2434±543	147±121	-189±158	504±172	0.8631	20
	24415±361	-2349±516	-	-	584±142	0.8476	20
V _{fluo} [cm ⁻¹]	24334±1237	-3426±1809	-5092±404	269±526	-423±572	0.9663	20
	23688±943	-2409±1360	-5076±238	-	-	0.96040	20
Δv_{SS} [cm ⁻¹]	141±1263	992±1848	5239±413	-457±538	927±584	0.9678	20
	761±160	-	5035±271	-	854±425	0.9656	20
Φ	0.54±0.37	0.22±0.54	-0.48±0.12	0.43±0.16	-0.37±0.17	0.7755	20
	0,70±0.05	-	-0.47±0.12	0.43±0.15	-0.41±0.13	0.7730	20
т [ns]	3.05±1.15	-0.22±1.67	0.63±0.39	1.42±0.58	-3.42±0.67	0.7598	19
	2.089±0.66	-	0.62±0.37	1.42±0.56	-3.38±0.58	0.7595	19
k _f *10 ⁸ [s⁻¹]	2.04±0.72	0.37±1.06	-1.68±1.06	0.79±0.37	-0.48±0.42	0.8649	19
	2.32±0.10	-	-1.71±0.24	0.67±0.36	-	0.8436	19
k _{nr} *10 ⁸ [s⁻¹]	1.68±1.32	-0.72±1.92	1.24±0.45	-2.21±0.66	4.08±0.77	0.7858	19
	1.19±0.18	-	1.20±0.43	-2.21±0.64	4.22±0.67	0.7838	19
μ ² *10 ⁵	1.19±0.30	-0.34±0.44	-0.69±0.10	0.36±0.15	-0.27±0.18	0.8624	19
[cm ³ /s]	0.97±0.04	-	-0.71±0.10	0.36±0.15	-0.20±0.16	0.8565	19

Table 7 ESI Estimated from eqn (4) adjusted coefficients $(v_x)_0$, a_{π^*} , b_{α} , c_{β} their standard error and correlation coefficient (r^2) of the multiple linear correlation analysis of absorption (v_{abs}) , fluorescence (v_{fluo}) wavenumber, Stokes shift (Δv_{SS}) , fluorescence quantum yield (ϕ), fluorescence (k_f) and nonradiative (k_{nr}) rate constant and value proportional to squared transition dipole moment $(\mu^2)^{\sim}k_f/(n^2 v_{fluo}^3)$ of 1NacDMA as a function of Kamlet-Taft parameter solvent scale. N.p. denote number of solvent using in the analysis.

	(V _x) ₀	a _{π*}	bα	Cβ	r ²	N.p.
V _{abs} [Cm ⁻¹]	28962±147	-927±351	11677±142	-866±315	0.8664	20
v _{fluo} [cm ⁻¹]	26662±400	-4105±961	959±389	-4455±862	0.8821	20
Δv_{SS} [cm ⁻¹]	2341±346	3178±830	208±336	3589±745	0.8651	20
	2354±339	3385±747	-	3458±701	0.8618	20
Φ	0.93±0.04	-0.11±0.10	-0.48±0.04	-0.50±0.09	0.9380	20
	0.90±0.03	-	-0.50±0.04	-0.56±0.07	0.9331	20
т [ns]	0.92±0.25	2,08±0.82	-2.31±0.72	0.38±0.97	0.7403	17
	0.93±0.24	2.35±0.45	-2.11±0.51	-	0.7372	17
k _f *10 ⁸ [s⁻¹]	7.57±0.40	-3.88±1.33	0.42±1.15	-4.05±1.56	0.8802	17
	7.59±0.39	-4,13±1.11	-	-3.66±1.11	0.8790	17
k _{nr} *10 ⁸ [s⁻¹]	0.67±1.47	-1.20±4.88	37.77±4.25	2.00±5.76	0.9244	17
	0.77±0.81	-	38.81±2.68	-	0.9237	17
$\mu^{2*}10^{5}$	2.16±0.15	0.59±0.49	-0.40±0.43	-0.89±0.58	0.6195	17
[cm ³ /s]	2.17±1.22	0.14±0.44	-3.72±1.47	-1.28±0.51	0.7825	15
	2.14±0.11	-	-3.84±1.38	-1.43.±0.26	0.7804	15

Table 8 ESI Estimated from eqn (4) adjusted coefficients $(v_x)_0$, a_{π^*} , b_{α} , c_{β} their standard error and correlation coefficient (r^2) of the multiple linear correlation analysis of absorption (v_{abs}) , fluorescence (v_{fluo}) wavenumber, Stokes shift (Δv_{SS}) , fluorescence quantum yield (ϕ), fluorescence (k_f) and nonradiative (k_{nr}) rate constant and value proportional to squared transition dipole moment $(\mu^2)^{\sim}k_f/(n^2 v_{fluo}^3)$ of 2NacDMA as a function of Kamlet-Taft parameter solvent scale. N.p. denote number of solvent using in the analysis.

	(V _x) ₀	a_{π^*}	bα	Cβ	R ²	Ν
V _{abs} [cm ⁻¹]	28190±148	1008±356	1183±144	-1217±319	0.8852	20
V _{fluo} [cm ⁻¹]	27351±537	-5937±1288	455±521	-2721±1155	0.8052	20
	27380±523	-5486±1171	-	-3008±1099	0.7960	20
Δv _{ss} [cm⁻¹]	839±535	6945±1283	728±519	1450±1150	0.8282	20
Φ	0.850±0.050	0.098±0.102	-0.527±0.049	-0.485±0.108	0.9044	20
	0.873±0.041	-	-0.511±0.044	-0.430±0.084	0.9004	20
τ [ns]	0.75±0.27	2.15±0.89	-2.10±0.78	0.24±0.11	0.6932	17
k _f *10 ⁸ [s⁻¹]	8.08±0.70	-3.39±2.32	0.05±2.02	-3.39±2.74	0.6817	17
	8.08±0.67	-4.00±1.92	-	-3.34±1.93	0.6816	17
k _{nr} *10 ⁹ [s⁻¹]	1.34±2.38	-2.79±7.91	56.74±6.89	1.64±9.34	0.9104	17
	0.65±1.32	-	57.34±4.68	-	0.9092	17
µ²*10⁵	2.16±0.22	0.82±0.74	-0.06±0.65	-0.07±0.88	0.2570	17
[cm ³ /s]	2.13±0.14	0.06±0.51	-4.30±1.67	1.04±0.58	0.6410	15
	2.14±0.12	-	-4.26±1.56	0.98±0.30	0.6405	15

Table 9 ESI Estimated from eqn (4) adjusted coefficients $(v_x)_0$, a_{π^*} , b_{α} , c_{β} their standard errors and correlation coefficient (r^2) of the multiple linear correlation analysis of absorption (v_{abs}) , fluorescence (v_{fluo}) wavenumber, Stokes shift (Δv_{ss}) , fluorescence quantum yield (ϕ), fluorescence (k_f) and nonradiative (k_{nr}) rate constant and value proportional to squared transition dipole moment $(\mu^2)^{\sim}k_f/(n^2 v_{fluo}^3)$ of AacDMA as a function of Kamlet-Taft parameter solvent scale. N.p. denote number of solvent using in the analysis.

	(V _x) ₀	a _{π*}	bα	Cβ	R ²	Ν
V _{abs} [cm ⁻¹]	22882±66	-15±159	573±64	-279±143	0.8653	20
	22878±54	-	571±57	-288±109	0.8652	20
v _{fluo} [cm ⁻¹]	22212±492	-4500±1180	568±477	-2489±1057	0.7608	20
Δv_{SS} [cm ⁻¹]	669±514	4485±1234	6±499	2210±1106	0.7354	20
	669±498	4491±1096	-	2206±1029	0.7354	20
Φ	0.72±0.07	-0.29±0.18	-0.21±0.07	0.05±0.16	0.5120	20
	0.72±0.07	-0.25±0.14	-0.21±0.07	-	0.5089	20
т [ns]	3.00±0.25	1.14±0.64	-0.63±0.26	0.31±0.60	0.4400	19
	3.02±0.24	1.36±0.46	-0.64±0.26	-	0.4299	19
k _f *10 ⁸ [s⁻¹]	2.35±1.58	-1.10±0.40	-0.30±0.17	-0.37±0.37	0.6688	19
	2.33±1.58	-1.37±0.30	-0.29±0.17	-	0.6470	19
k _{nr} *10 ⁸ [s ⁻¹]	1.03±0.32	-0.04±0.82	0.93±0.34	0.32±0.72	0.3634	19
	1.12±0.18	-	0.95±0.31	-	0.3522	19
µ ² *10 ⁵	1.00±0.06	-0.52±0.16	0.11±0.07	-0.11±0.15	0.6945	19
[cm ³ /s]	1.00±0.06	-0.60±0.12	-0.10±0.06	-	0.6838	19

Fig. 27 ESI Plot of the correlation of v_{abs}^{max} and v_{fluo}^{max} versus Bilot-Kawski solvent polarity function $f_{BK}(\epsilon, n^2)$ for 1NacDMA. Solid line represents the best fit for absorption, dashed line for emission. The black points denote 1-chloro-hydrocarbon solvents, red points other studied solvents. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 28 ESI Plot of the correlation of v_{abs}^{max} and v_{fluo}^{max} versus Bilot-Kawski solvent polarity function $f_{BK}(\epsilon,n^2)$ for 2NacDMA. Solid line represents the best fit for absorption, dashed line for emission. The black points denote 1-chloro-hydrocarbon solvents, red points other studied solvents. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 29 ESI Plot of the correlation of v_{abs}^{max} and v_{fluo}^{max} versus Bilot-Kawski solvent polarity function $f_{BK}(\epsilon,n^2)$ for AacDMA. Solid line represents the best fit for absorption, dashed line for emission. The black points denote 1-chloro-hydrocarbon solvents, red points other studied solvents. Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 30 ESI Plot of the correlation of v_{abs}^{max} - v_{fluo}^{max} versus Bilot-Kawski solvent polarity function $f_{BK}(\epsilon, n^2)$ for 1NacDMA. Solid line represents the best fit for 1-chloro-hydrocarbon solvents, dashed line for 1-chloro-hydrocarbons and saturated hydrocarbon solvents, and dotted line for all solvents studied except 1,4-dioxane (20) and HFiP (5). Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 31 ESI Plot of the correlation of $v_{abs}^{max}+v_{fluo}^{max}$ versus Bilot-Kawski solvent polarity function $f_{BK}(\epsilon,n^2)+2g(n)$ for 1NacDMA. Solid line represents the best fit for 1-chloro-hydrocarbon solvents, dashed line for 1-chloro-hydrocarbons and saturated hydrocarbon solvents, and dotted line for all solvents studied except 1,4-dioxane (20) and HFiP (5). Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 32 ESI Plot of the correlation of v_{abs}^{max} - v_{fluo}^{max} versus Bilot-Kawski solvent polarity function $f_{BK}(\epsilon, n^2)$ for 2NacDMA. Solid line represents the best fit for 1-chloro-hydrocarbon solvents, dashed line for 1-chloro-hydrocarbons and saturated hydrocarbon solvents, and dotted line for all solvents studied except 1,4-dioxane (20) and HFiP (5). Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 33 ESI Plot of the correlation of $v_{abs}^{max} + v_{fluo}^{max}$ versus Bilot-Kawski solvent polarity function $f_{BK}(\epsilon, n^2) + 2g(n)$ for 2NacDMA. Solid line represents the best fit for 1-chloro-hydrocarbon solvents, dashed line for 1-chloro-hydrocarbons and saturated hydrocarbon solvents, and dotted line for all solvents studied except 1,4-dioxane (20) and HFiP (5). Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 34 ESI Plot of the correlation of $v_{abs}^{max} - v_{fluo}^{max}$ versus Bilot-Kawski solvent polarity function $f_{BK}(\varepsilon, n^2)$ for AacDMA. Solid line represents the best fit for 1-chloro-hydrocarbon solvents, dashed line for 1-chloro-hydrocarbons and saturated hydrocarbon solvents, and dotted line for all solvents studied except 1,4-dioxane (20) and HFiP (5). Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 35 ESI Plot of the correlation of $v_{abs}^{max} + v_{fluo}^{max}$ versus Bilot-Kawski solvent polarity function $f_{BK}(\epsilon,n^2)+2g(n)$ for AacDMA. Solid line represents the best fit for 1-chloro-hydrocarbon solvents, dashed line for 1-chloro-hydrocarbons and saturated hydrocarbon solvents, and dotted line for all solvents studied except 1,4-dioxane (20) and HFiP (5) and short wavelength band in TFE(27). Numbers in the squares correspond to the order of the solvents in Tables 1-3 in the main text of publication.

Fig. 36 ESI HOMO orbital of 1NacDMA

Fig. 37 ESI LUMO orbital of 1NacDMA

Fig. 38 ESI HOMO orbital of 2NacDMA

Fig. 39 ESI LUMO orbital of 2NacDMA

Fig. 40 ESI HOMO orbital of AacDMA

Fig. 41 ESI LUMO orbital od AacDMA

Fig. 42 ESI The dependence of energy on dihedral angle for AacDMA. Lines denote the best fit of Gaussian function to the calculated points. Solid black line for ϵ =2 (cyclohexane in the ground state), blue dotted line for ϵ =37.5 (acetonitrile in the ground state),dashed red line ϵ =2 (cyclohexane in the excited state).

Fig. 43 ESI Absorption spectra of 1NacDMA in cyclohexane (black line) and acetonitrile (red line) and calculated vertical transitions in absorption for ε =2 (cyclohexane, black vertical lines) and ε =37.5 (acetonitrile, red vertical lines).

Fig. 44 ESI Absorption spectra of 2NacDMA in cyclohexane (black line) and acetonitrile (red line) and calculated vertical transitions in absorption for ε =2 (cyclohexane, black vertical lines) and ε =37.5 (acetonitrile, red vertical lines).

Fig. 45 ESI Absorption spectra of AacDMA in cyclohexane (black line) and acetonitrile (red line) and calculated vertical transitions in absorption for ϵ =2 (cyclohexane, black vertical lines) and ϵ =37.5 (acetonitrile, red vertical lines).

Fig. 46 ESI The difference of electron density between the excited and ground state for 1NacDMA. The blue color denotes decrease and red increase of electron density.

Fig. 47 ESI The difference of electron density between the excited and ground state for 2NacDMA. The blue color denotes decrease and red increase of electron density.

Fig. 48 ESI The difference of electron density between the excited and ground state for AacDMA. The blue color denotes decrease and red increase of electron density.

Fig. 49 ESI The changes in the bond lengths between the optimized structures calculated in excited and ground state for ε =2 (black bars) as well as between optimized structures calculated in the ground state for ε =37.5 and ε =2 for 1NacDMA.

Fig. 50 ESI The changes in the bond lengths between the optimized structures calculated in excited and ground state for ε =2 (black bars) as well as between optimized structures calculated in the ground state for ε =37.5 and ε =2 for 2NacDMA.

Fig. 51 ESI The changes in the bond lengths between the optimized structures calculated in excited and ground state for ε =2 (black bars) as well as between optimized structures calculated in the ground state for ε =37.5 and ε =2 for AacDMA.