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Fig. S1 TEM images of milled Si-SiO2 mixture powders before reaction

Fig. S1 shows the typical TEM image of the milled Si-SiO2 mixture powders 

before reaction. It can be observed that the raw material is irregular particles with 

sizes range from 120 to 300 nm. 

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2014



Fig. S2 XRD pattern of milled Si-SiO2 mixture powders before reaction

Fig. S2 exhibits the XRD pattern of milled Si-SiO2 mixture powders before 

reaction. Two obvious diffraction peaks have been detected and indexed to Si (JCPDS 

Card No. 27-1402) marked as (111) and (220), suggesting that cubic SiC is the only 

crystalline phase besides the graphite substrate. The broad XRD peak at low 

diffraction angle (~20°) is aroused by the milled amorphous SiO2 powders.

 
Fig. S3 Force analysis of the radial direction between adjacent atomic layers according to the 

proposed atomic layer dislocation stacking growth model

As is well known, classical mechanics theory tells us that the helical structure 

can only be obtained by exerting a constant vertical force upon a body of uniform 

circular motion. Similarly, the formation of the SiC@SiO2 coaxial nanospring can 

also be attributed to the combined effect of radial component force and axial 

component force. 

Firstly, we think that the axial force for growing the SiC@SiO2 coaxial 

nanospring can be provided by the nucleation energy during the reaction process. 

Secondly, according to the proposed growth mechanism in the manuscript (Fig. 4), 



the radial direction force between adjacent atomic layers is analyzed, as shown in Fig. 

S3. It can be observed that the distortion energy can generate a stress (F1 or F2) 

between A (or B) layer and B (or C) layer, which is always perpendicular to the 

tangential direction of the correpsonding distortion atomic layer. We speculate that 

the stress is a vector connected with the magnitude and direction of the corresponding 

angular separation θ. The generated stresses can be divided into two parts, the 

centripetal force (Fn1 and Fn2) and shear force (Fs1 and Fs2). The centripetal force 

guarantees uniformity of the screw diameter of the single SiC@SiO2 coaxial 

nanospring, and the shear forces become driving forces rotated about the center of 

circle. In other words, the uniform circular motion for growing the SiC@SiO2 coaxial 

nanospring can be achieved by the additive effects of the centripetal force and shear 

force (that is generated stress). 

In conclusion, the SiC@SiO2 coaxial nanospring rather than screw dislocation 

can be obtained after the end of reaction according to the proposed mechanism. The 

above explanation demonstrates that the proposed atomic layer dislocation stacking 

growth model is reasonable on theory. 

Although there is no direct method to observe the distortion energy, and the 

stress can also not be measured directly. As shown in Fig. 3, it can be clearly 

observed that both the screw diameter of the as-synthesized SiC@SiO2 coaxial 

nanospring and the size of every component are changeless. In addition, the stacking 

direction of the SiC core keeps invariable along the growth direction, which is in 

accordance with the proposed model. Certainly, further studies and more precise 



evidences for the growth process of the SiC@SiO2 coaxial nanospring will be 

collected in our future works.

Fig. S4 The repetitive mechanical unit of the nanostructure for the calculation of 

the spring constant 

In order to simplify the model, one geometric symmetry cycle is taken as the 

repetitive unit of the nanospring for the calculation of the spring constant as shown in 

Fig. S4, and the corresponding mechanical response can be divided into four terms, 

shear force Qf, tension force Nf, bending moment MNf as well as torsion moment TQf, 

when an uniaxial load F is applied upon the nanospring[19, 21]. 

Assuming that the ends of the nanostructure can rotate freely, and the friction-

induced fixation momentum as well as the SiC-SiO2 interfacial bonding can be 

disregarded, furthermore, the shear modulus of the coaxial nanospring is constant 

during the deformation process. The formula of the spring constant (K) can be 

described by19,21:
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Where r is the real-time radius of the nanospring, l0 is the total length of an unit cycle 

as shown in Fig. S4, which can be seemed as a constant and is equal to the the original 

nanospring length: l= . The pitch distance H can be illustrated asmHrl 92
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herein, υ is the Poisson’s ratio (constant approximately equal to 0.17 for SiC and 

SiO2). Furthermore, the tensile modulus (E) can be derived as a function of υ and 

shear modulus (G) as . A is the cross-sectional area of the nanospring, GvE )1(2 

herein, which can be regarded as circular for SiC@SiO2 coaxial nanospring. I is the 

moment of inertia, and J is the polar moment of inertia of the cross section, the 

corresponding parameters can be expressed respectively as:
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 The above parameters and formula (2) are plugged into the formula (1) as following:
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The value of shear modulus, Poisson’s ratio, diameter of the SiC core nanospring (

,  and ) are plugged into formula (3), and the GPaGSiC 192 17.0v md 9
0 1025 

spring constant of SiC core nanospring (KSiC) can be expressed as a function of the 

radius:
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The corresponding parameters of the SiO2 core nanospring under unstressed state 

(GSiO2=29 GPa,  and ) are plugged into formula (3), and the 17.0v md 9
0 1025 

spring constant of SiO2 core nanospring (KSiO2*) can be deduced as following:
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Similarly, the spring constant of SiO2 solid nanospring (KSiO2) with the d0 of 45 nm 

under unstressed state can also be illustrated as:
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