
Supporting Information (ESI†)

Porous metal–organic framework MIL-100(Fe) catalyst as an efficient catalyst for selective catalytic reduction of NO_x with NH₃

Peng Wang,^a Huimin Zhao,^a Hong Sun,^b Hongtao Yu,^a Shuo chen,^a Xie Quan^{a,*}

^a School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education, China) Dalian, 116024, China.

^b School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.

Figure S1 Rietveld refinement plot for as-synthesized MIL-100(Fe) in the space group *Fd-3m* (NO. 227).

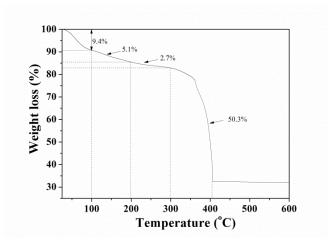


Figure S2 TGA under air (5 °C /min heated rate) of MIL-100(Fe).

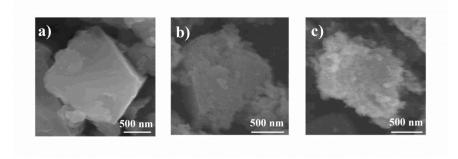
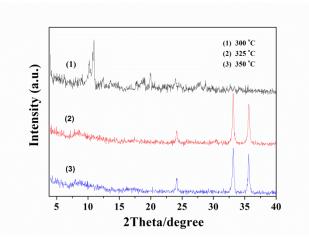



Figure S3 SEM image of MIL-100(Fe) after catalytic activity test at a) 300 °C ; b) 325 °C; c) 350 °C.

Figure S4 Powder X-ray diffraction pattern of MIL-100(Fe) after catalytic activity test at a) 300 °C; b) 325 °C; c) 350 °C.

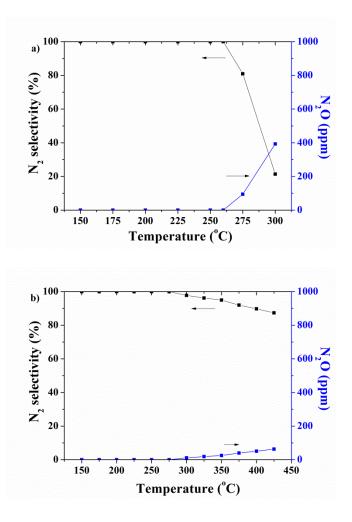


Figure S5 a) N₂ selectivity and N₂O formation of MIL-100(Fe) catalyst; b) N₂ selectivity and N₂O formation of V₂O₅-WO₃/TiO₂ catalyst. Reaction condition: [NH₃] = 500 ppm, [NO_x]= 500 ppm, [O₂]= 4%, N₂ balance and GHSV=30,000 h⁻¹.

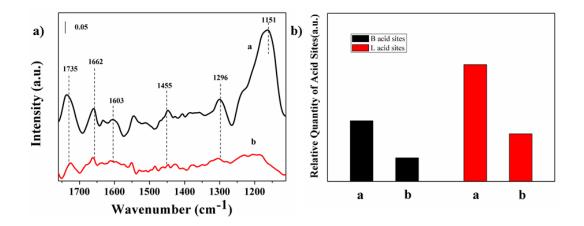


Figure S6 a) comparison of NH_3 adsorption over MIL-100(Fe) catalysts before (a) and after durability test with SO₂ and H₂O (b) at 250 °C; b) relative quantity of acid sites over these MIL-100(Fe) catalysts.