Electronic Supplementary Information for RSC Advances This journal is © the Royal Society of Chemistry 20XX

Electronic Supplementary Information

Unveiling photophysical properties of cyclometalated iridium(III)

complexes with azadipyrromethene and dipyrromethene

ancillary: A theoretical perspective

Xin-Yao Ren, Yong Wu, Guo-Gang Shan, Li Wang, Yun Geng*and Zhong-Min Su*

Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China *E-mail: gengy575@nenu.edu.cn; zmsu@nenu.edu.cn*

	PBE0	B3LYP	TPSSh	mPW1PW91	PBEh1PBE	PBE	Exp. ^a
Ir-C1	2.010	2.027	2.022	2.012	2.012	2.018	2.017
Ir-C2	2.003	2.020	2.015	2.005	2.005	2.011	2.023
Ir-N1	2.064	2.091	2.072	2.066	2.068	2.072	2.041
Ir-N2	2.037	2.064	2.047	2.040	2.042	2.043	2.029
Ir-N3	2.231	2.288	2.244	2.236	2.237	2.263	2.188
Ir-N4	2.209	2.264	2.216	2.213	2.215	2.23	2.183
N3-Ir-N4	84.77	84.15	84.78	84.80	84.57	84.51	85.06
C1-Ir-N1	79.97	79.70	79.81	79.92	79.91	79.98	80.94
C2-Ir-N2	80.21	79.97	80.05	80.15	80.14	80.29	81.09
C3-N5-C4	129.89	130.89	129.67	130.03	129.93	129.86	127.95

Table S1 Main optimized geometry structural parameters of **1** in the ground state obtained by different functional levels with the experimental data.

^a Ref. 32

Table S2 Absorption spectra of **1** calculated by six different functions with basis sets of LANL2DZ ECP for Ir and 6-31G (d,p) for nonmetal atoms in CHCl₃ media, together with the experimental values.

	M06	O3lyp	TPSSh	B3LYP	mPW1PW91	PBE0	Exp ^a .
	541	555	554	532	513	514	579
λ_{abs}/nm	409	406	402	414	399	400	403
	362	365	371	354	373	374	363
	277	307	299	281	269	269	265

^a Ref. 32

	1	2	3	4
		Bond length		
Ir-C1	-0.008	-0.002	0.001	0
Ir-C2	-0.002	-0.002	-0.003	0
Ir-N1	0.003	0.002	-0.001	0
Ir-N2	0.009	-0.002	-0.002	-0.001
Ir-N3	0.022	0.008	0.017	-0.004
Ir-N4	0.065	0.005	-0.004	-0.005
		Bond angle		
N3-Ir-N4	-0.48	-0.99	-1.14	-1
C1-Ir-N1	-0.02	-0.04	-0.07	0
C2-Ir-N2	0.08	-0.01	-0.08	-0.01
C3-X15-C4 ^a	-4.12	-2.39	-3.15	-2.97
C1-Ir-N3	4.59	0.38	-0.39	0.71
C2-Ir-N4	-3.38	-0.34	1.44	0.70
		Dihedral angle		
N3-C3-X15-N4 ^a	-45.87	-3.96	5.17	0.46
N3-C8-C9-C10	71.47	-6.05	-20.58	_
N4-C5-C6-C7	31.24	17.46	_	_
N2-C11-C12-C2	-1.09	-1.48	0.48	-0.17
N1-C13-C14-C1	1.15	-0.30	-0.53	-0.17

Table S3 Variations for bond distances (Å), bond angles (°) and dihedral angles (°) between the	9
triplet (T_1) and ground states (S_0) of all the complexes.	

^{*a*} X = N (in 1); X=C (in 2-4)

Table S4 Calculated intramolecular centroid-centroid distances (Å) for 1-3 at DFT/PBE0 level of theory

	1	1-exp ^a	2	3
$R(S_0)$	3.661/3.708	3.501/3.607	3.669/3.688	3.605
$R(T_1)$	3.631/3.671		3.678/3.745	3.638

^a Ref. 32

	Orbital ^a	Energy(eV		Compo	ositions (%)	
)	Ir	ppy1	ppy2	ancillary
1	L+2	-1.28	3.75	70.22	23.68	1.48
	L+1	-1.42	2.56	24.56	68.70	2.82
	L	-2.49	1.18	0.41	0.46	97.79
	Н	-5.38	0.23	0.47	0.38	98.88
	H-1	-5.41	39.95	22.21	24.27	13.20
	H-2	-5.86	20.75	4.83	10.46	63.72
2	L+2	-1.22	3.86	63.69	29.86	1.70
	L+1	-1.35	2.47	30.86	62.37	2.93
	L	-2.08	1.10	0.84	0.55	97.27
	Н	-5.31	5.98	3.31	2.24	88.34
	H-1	-5.35	35.52	19.04	24.17	20.99
	H-2	-5.83	27.02	13.75	17.66	41.28
3	L+2	-1.22	3.58	81.01	13.46	1.00
	L+1	-1.38	2.36	13.69	81.45	1.38
	L	-2.10	1.14	0.23	0.63	97.66
	Н	-5.36	24.94	22.03	9.08	43.64
	H-1	-5.48	15.78	14.26	6.29	63.43
	H-2	-5.81	28.78	8.44	5.83	56.64
4	L+2	-1.32	3.36	47.14	47.92	0.75
	L+1	-1.38	2.27	48.24	47.46	0.86
	L	-2.14	1.08	0.37	0.34	97.59
	Н	-5.49	40.48	27.22	27.48	4.40
	H-1	-5.52	1.31	0.43	0.36	97.88
	Н-2	-5.81	31.95	4.25	4.43	59.14

Table S5 Molecular orbital compositions (%) in the S_0 State for Ir(III) complexes by DFT/PBE0 level (ppy1 and ppy2 refer to phenylpyridine ligands containing C1 and N1 atoms, C2 and N2 atoms, respectively).

^{*a*} The orbitals involved in the excitations (H = HOMO and L = LUMO).

Complex	state	λ_{cal}/E	f	Configuration ^a	Nature	Exp. ^b (nm)
1	\mathbf{S}_1	653/1.90	0.0166	H→L (97%)	MLCT/LLCT	
	S_2	541/2.29	0.0805	H-2→L (79%)	MLCT/LLCT/IL	579
	S_3	518/2.39	0.1014	H-3→L (97%)	MLCT/ILCT	
	S_4	508/2.44	0.6973	H-1→L (81%)	ILCT	
	\mathbf{S}_7	412/ 2.98	0.0290	H-5→L (69%)	LLCT/ILCT	
				H-7→L (22%)	MLCT/LLCT/IL	
	S_8	409/3.03	0.0692	H-6→L (78%)	MLCT/LLCT/IL	403
	S ₁₉	341/3.63	0.0563	H-3→L+2(48%)	MLCT/LLCT	
				H-2→L+2(17%)	LLCT/ILCT	
	S_{47}	277/4.48	0.1135	H-1→L+5(54%)	ILCT	265
2	\mathbf{S}_1	544/2.28	0.0210	H→L (97%)	MLCT/LLCT	
	S_2	473/2.62	0.3335	H-1→L (58%)	ILCT	
				H-2→L (38%)	MLCT/LLCT/IL	
	S_3	450/2.75	0.4016	H-2→L (52%)	MLCT/LLCT/IL	
				H-1→L (31%)	ILCT	
	S_4	445/2.79	0.1796	H-3→L (84%)	MLCT/ILCT	
	S_9	363/3.41	0.0372	H-1→L+1(58%)	LLCT	
				H-2→L+1(25%)	MLCT/LLCT/IL	
	S_{10}	359/3.46	0.0794	H-6→L (54%)	MLCT/LLCT/IL	
				H-8→L (17%)		
	S ₁₆	342/3.62	0.0566	H-3→L+2(45%)	MLCT/LLCT	
				H→L+3(19%)	MLCT/ILCT	
	S_{37}	287/4.32	0.1202	H-5→L+1(24%)	LLCT/ILCT	
				H-3→L+4(20%)	LLCT	
	S ₃₉	282/4.40	0.0554	H→L+5(46%)	MLCT/LLCT	
3	\mathbf{S}_1	543/2.28	0.0168	H→L (96%)	MLCT/LLCT	
	S_2	466/2.66	0.0105	H-2→L (80%)	MLCT/ILCT	
	S_3	453/2.74	0.1513	H-3→L (76%)	MLCT/ILCT	
				H-2→L (17%)	MLCT/ILCT	
	S_4	440/2.82	0.7448	H-1→L (88%)	ILCT	
	S_5	416/2.98	0.0184	H→L+1(93%)	MLCT/LLCT/IL	
	S_{10}	356/3.49	0.0849	H-6→L (77%)	MLCT/LLCT/IL	
	S_{11}	353/3.52	0.0261	H-2→L+1(52%)	MLCT/LLCT	
				H-3→L+1(16%)	MLCT/LLCT	
	S_{15}	341/3.63	0.0777	H→L+3(64%)	MLCT/LLCT	
	S ₂₅	303/4.09	0.0640	H-2→L+3(38%)	MLCT/LLCT	
				H-4→L+2(20%)	LLCT/ILCT	
				H-3→L+3(31%)	MLCT/LLCT	
	S ₃₅	286/4.34	0.1255	H-5→L+2(20%)	LLCT/ILCT	
				H-4→L+3(19%)	ILCT	

Table S6 Calculated singlet excitation energies (E), wavelengths (λ_{cal}/nm), oscillator strengths (*f*), dominant contribution and transition characters of **1-4** in CHCl₃ media at TD-M06 level.

Electronic Supplementary Information for RSC Advances
This journal is © the Royal Society of Chemistry 20XX

				H-6→L+1(19%)	MLCT/LLCT/IL
4	S_2	474/2.62	0.0105	H-3→L (88%)	MLCT/ILCT
	S_3	466/2.66	0.1554	H-2→L (98%)	MLCT/ILCT
	S_4	431/2.87	0.6922	H-1→L (88%)	ILCT
	S_5	408/3.04	0.0347	H→L+1(95%)	MLCT/LLCT/IL
	S_{11}	354/3.50	0.0605	H-6→L (85%)	MLCT/LLCT/IL
	S_{12}	348/3.56	0.1124	H-3→L+1(45%)	MLCT/LLCT
				H-2→L+2(44%)	
	S ₁₅	338/3.66	0.0608	H→L+3(87%)	MLCT/ILCT
	S_{27}	294/4.21	0.2017	H-4→L+2(55%)	LLCT/ILCT
				H-2→L+4(29%)	MLCT/LLCT
	S ₃₂	282/4.39	0.1544	H-5→L+1(60%)	LLCT/ILCT
	S ₃₃	281/4.40	0.1294	H-6→L+1(29%)	MLCT/LLCT/IL
				H-5→L+2(30%)	LLCT/ILCT
	S ₄₄	264/4.70	0.1366	H-1→L+5(70%)	ILCT

^{*a*} The orbitals involved in the excitations (H = HOMO and L = LUMO).

^b Ref. 32

	0					
	Orbital ^a	d_{xy}	\mathbf{d}_{xz}	\mathbf{d}_{yz}	$d_{x^2-y^2}$	d_{z^2}
	Н	12.12	1.66	8.31	1.59	17.64
	H-1					1.13
2	H-2		17.92	14.08		11.13
	H-3				41.65	1.50
	Н	12.69	2.18	8.27		10.36
	H-1	4.81	3.52	3.85		
3	H-2	1.89	3.80		26.37	6.08
	H-3		14.00	7.40	10.40	15.58
	Н	10.48	5.16	10.32	2.26	15.32
	H-1		1.54			3.87
4	H-2	12.94		1.14	26.78	
	H-3		22.80	2.69		9.42

 Table S7 5d(Ir) orbital compositions (%) in selected occupied orbitals of complexes 2-4 at their Tgeometries.

^{*a*} H and L represent HOMO and LUMO, repectively.

Table S8 Electronic transitions of **2-4** calculated at the T_1 optimized geometry by TD-B3LYP/TDA in CHCl₃ solution

S_n/T_m	SOC (cm^{-1})	1,3MI CT	F	ſ	
		' WILC I	E	J J	Configuration ^a
	$< T_1 H_{SOC} S_n >$	(%)	(eV)		
T ₁		<1.00	1.59		H-1→L (86%)
S_1	23.0	37.88	1.97	0.0174	H→L (94%)
S ₂	62.8	33.27	2.43	0.1525	H-2→L (79%)
S ₃	60.4	34.55	2.54	0.2897	H-3→L (82%)
T ₁		11.98	1.60		H→L (37%)
		6.64			H-1→L (60%)
S ₁	86.7	28.49	1.99	0.0266	H→L (88%)
S_2	113.0	20.82	2.45	0.1071	H-3→L (45%)
		13.33			H-2→L (36%)
S ₃	120.0	19.62	2.52	0.1307	H-2→L (53%)
T ₁		4.71	1.68		H-1→L (87%)
S ₁	103.0	41.80	2.10	0.0020	H→L (96%)
S ₂	71.6	28.28	2.43	0.0220	H-3→L (81%)
S ₃	128.0	39.63	2.46	0.2047	H-2→L (97%)
	$\begin{array}{c c} \hline T_1 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline T_1 \\ \hline \\ S_1 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ T_1 \\ \hline \\ S_1 \\ \hline \\ S_1 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \end{array}$	$\begin{array}{ c c c c } < T_1 H_{SOC} S_n > \\ \hline T_1 & & \\ \hline S_1 & 23.0 \\ \hline S_2 & 62.8 \\ \hline S_3 & 60.4 \\ \hline T_1 & & \\ \hline S_1 & 86.7 \\ \hline S_2 & 113.0 \\ \hline S_3 & 120.0 \\ \hline T_1 & & \\ \hline S_1 & 103.0 \\ \hline S_2 & 71.6 \\ \hline S_3 & 128.0 \\ \hline \end{array}$	$\begin{array}{ c c c c c } < < T_1 H_{SOC} S_n > & (\%) \\\hline T_1 & < 1.00 \\\hline S_1 & 23.0 & 37.88 \\\hline S_2 & 62.8 & 33.27 \\\hline S_3 & 60.4 & 34.55 \\\hline T_1 & 11.98 \\\hline & 6.64 \\\hline S_1 & 86.7 & 28.49 \\\hline S_2 & 113.0 & 20.82 \\\hline & 13.33 \\\hline S_3 & 120.0 & 19.62 \\\hline T_1 & 4.71 \\\hline S_1 & 103.0 & 41.80 \\\hline S_2 & 71.6 & 28.28 \\\hline S_3 & 128.0 & 39.63 \\\hline \end{array}$	$\begin{array}{ c c c c c } < < T_1 H_{SOC} S_n > & (\%) & (eV) \\ \hline T_1 & <1.00 & 1.59 \\ \hline S_1 & 23.0 & 37.88 & 1.97 \\ \hline S_2 & 62.8 & 33.27 & 2.43 \\ \hline S_3 & 60.4 & 34.55 & 2.54 \\ \hline T_1 & 11.98 & 1.60 \\ & 6.64 & \\ \hline S_1 & 86.7 & 28.49 & 1.99 \\ \hline S_2 & 113.0 & 20.82 & 2.45 \\ & 13.33 & \\ \hline S_3 & 120.0 & 19.62 & 2.52 \\ \hline T_1 & & 4.71 & 1.68 \\ \hline S_1 & 103.0 & 41.80 & 2.10 \\ \hline S_2 & 71.6 & 28.28 & 2.43 \\ \hline S_3 & 128.0 & 39.63 & 2.46 \\ \hline \end{array}$	$\begin{array}{ c c c c c c } < < T_1 H_{SOC} S_n> & (\%) & (eV) \\ \hline T_1 & <1.00 & 1.59 \\ \hline S_1 & 23.0 & 37.88 & 1.97 & 0.0174 \\ \hline S_2 & 62.8 & 33.27 & 2.43 & 0.1525 \\ \hline S_3 & 60.4 & 34.55 & 2.54 & 0.2897 \\ \hline T_1 & 11.98 & 1.60 & \\ \hline & 6.64 & \\ \hline & 6.64 & \\ \hline & & \\ \hline S_1 & 86.7 & 28.49 & 1.99 & 0.0266 \\ \hline S_2 & 113.0 & 20.82 & 2.45 & 0.1071 \\ \hline & 13.33 & \\ \hline S_3 & 120.0 & 19.62 & 2.52 & 0.1307 \\ \hline T_1 & & 4.71 & 1.68 & \\ \hline S_1 & 103.0 & 41.80 & 2.10 & 0.0020 \\ \hline S_2 & 71.6 & 28.28 & 2.43 & 0.0220 \\ \hline S_3 & 128.0 & 39.63 & 2.46 & 0.2047 \\ \hline \end{array}$

^{*a*} H and L represent HOMO and LUMO, repectively.

 Table S9 Calculated net spin values located on Ir(III) of ³MLCT and ³MC states for 1-4 with PBE0 functional.

Spin (Ir)	1	2	3	4	
³ MLCT	0.023	0.005	0.012	0.015	

Electronic Supplementary Information for RSC Advances This journal is © the Royal Society of Chemistry 20XX

Fig. S1. The synthetic routes of the designed ancillary ligands L1, L2 and L3.

Fig. S1 depicts the possible synthetic routes of the designed ancillary ligands. As shown in Fig. 1, the intermediates **M1**, **M2**, **M3** and **M4** can be prepared according to the reported literature procedures (*Inorg. Chem.*, 2012, **51**, 7682; *J. Org. Chem.*, 2007, **72**, 2187; *Can. J. Chem.*, 2001, **79**, 1827.). The designed ligands tend to be relatively easy to synthesize *via* condensation of pyrrole derivatives (**M1** and **M4**) and corresponding aldehydes (**M3** and formaldehyde) in different reaction conditions (*Chem. Rev.*, 2007, **107**, 4891; *Chem. Commun.*, 2009, 4515.), followed by bromination with NBS (*J. Org. Chem.*, 2007, **72**, 2187.). Then, the iridium(III) complexes (**2-4**) investigated in this work can be prepared following procedures developed by Thompson or Gray et. al. (*Inorg. Chem.*, 2010, **49**, 6077; *Organometallics*, 2014, **33**, 637).

Fig. S2. Optimized structures of 1-4 in the ground states at DFT/PBE0/LANL2DZ level.

Fig. S3. Orbital interaction diagram for 1, formed by two fragments at its optimized T_1 geometry.

Fig. S4. Spin-density distributions (isovalue 0.0004 au) calculated for the ³MC states of complexes 1-4.

Fig. S5. Energy level diagram of ${}^{3}MLCT/\pi\pi^{*}$ and ${}^{3}MC$ excited states for 1-4 with the normalized S₀ levels.

		S_0				T_1	
Ir	-1.765246	8.612352	5.371036	Ir	-1.881668	8.530939	5.270154
Br	-0.183596	7.103266	-0.362633	Br	1.450435	7.718625	0.180227
Br	-0.011788	4.837846	9.865466	Br	-1.387703	4.457891	9.643112
Ν	-0.707345	7.716445	3.622669	N	-0.997237	7.542986	3.449077
Ν	-0.393204	5.540089	4.65458	N	-0.498183	5.438982	4.529641
Ν	-0.744766	7.03815	6.537954	N	-0.800386	6.885952	6.407698
Ν	-3.352877	7.40812	4.83501	N	-3.643168	7.490145	4.978315
Ν	-0.333797	9.931992	5.971659	N	-0.284139	9.759757	5.621732
С	-0.615314	8.112577	2.347137	C	-0.501456	8.138057	2.318954
С	-0.377855	6.985936	1.494694	C	0.563536	7.353293	1.785632
С	-0.313693	5.850653	2.271781	C	0.690243	6.210592	2.548169
С	-0.509469	6.336607	3.618858	C	-0.305811	6.371751	3.60016
С	-0.440764	5.815173	5.939043	C	-0.792343	5.661886	5.79785
С	-0.18038	4.807254	6.940095	C	-1.080109	4.599447	6.754957
С	-0.319703	5.482407	8.136802	C	-1.209105	5.264831	7.964257
С	-0.643206	6.844284	7.857838	C	-0.978062	6.651517	7.748359
С	-0.066569	4.458387	1.895692	C	1.565175	5.056645	2.358838
С	-0.781233	3.418648	2.509631	C	1.06657	3.75218	2.500341
Н	-1.51915	3.659181	3.266267	Н	0.025516	3.610526	2.768472
С	-0.549046	2.094669	2.156086	C	1.893169	2.65403	2.292786
Н	-1.110991	1.303792	2.644356	Н	1.485644	1.65153	2.391113
С	0.401255	1.782228	1.187419	C	3.231444	2.833659	1.950414
Н	0.580731	0.746811	0.911418	Н	3.875798	1.973735	1.791162
С	1.121351	2.805408	0.574688	C	3.737911	4.123889	1.811808
Н	1.870465	2.571036	-0.17645	Н	4.78161	4.274387	1.550611
С	0.890025	4.13062	0.923121	C	2.913568	5.224998	2.008792
Н	1.462561	4.920908	0.44952	Н	3.315814	6.227385	1.903891
С	-0.67378	9.501024	1.858933	C	-1.084583	9.299695	1.653728
С	-1.62221	9.869142	0.897713	C	-2.442361	9.286798	1.305794
Н	-2.368556	9.147668	0.58195	Н	-3.054752	8.444735	1.61001
С	-1.625763	11.153107	0.367177	C	-2.984888	10.322696	0.557572
Н	-2.378345	11.42855	-0.365656	Н	-4.03624	10.298128	0.288872
С	-0.670938	12.082666	0.77225	C	-2.186694	11.395068	0.164886
Н	-0.670223	13.083562	0.349749	Н	-2.614389	12.207246	-0.416184
С	0.286653	11.720947	1.715161	C	-0.839633	11.424234	0.517547
Н	1.043452	12.435192	2.027398	Н	-0.214748	12.260206	0.216512
С	0.286491	10.438359	2.252488	C	-0.287146	10.377408	1.245697
Н	1.05166	10.152886	2.964402	Н	0.766136	10.392923	1.508024
С	0.158867	3.405671	6.689419	C	-1.160218	3.17068	6.465548
С	-0.358047	2.39215	7.511775	C	-2.157848	2.375347	7.052055

Table S10 Cartesian coordinates of $[Ir(ppy)_2(L_aBr_2)]$ (1) at the S₀ and T₁ optimized geometry.

Electronic Supplementary Information for RSC Advances This journal is © the Royal Society of Chemistry 20XX

Н	-1.016511	2.655387	8.332741	Н	-2.879913	2.83354	7.720679
С	-0.048147	1.058437	7.276002	С	-2.234086	1.01534	6.777831
Η	-0.462571	0.289085	7.921622	Н	-3.016982	0.417916	7.236786
С	0.784683	0.708396	6.215553	С	-1.313048	0.419586	5.918813
Н	1.028077	-0.334642	6.032966	Н	-1.370501	-0.644759	5.708993
С	1.301934	1.704116	5.391189	С	-0.316702	1.198028	5.334498
Η	1.945853	1.443274	4.556346	Н	0.414287	0.741038	4.672986
С	0.994436	3.039734	5.623182	С	-0.239775	2.5601	5.599668
Н	1.394765	3.809391	4.974467	Н	0.538949	3.162056	5.145812
С	-0.736902	7.879449	8.904216	С	-0.668792	7.643609	8.772679
С	0.319254	8.775384	9.091214	С	0.513828	8.388478	8.642001
Н	1.163612	8.755005	8.408054	Н	1.119109	8.254961	7.750775
С	0.299775	9.672381	10.15552	С	0.917538	9.254733	9.649812
Н	1.129374	10.360228	10.293216	Н	1.843854	9.811828	9.540474
С	-0.7741	9.683942	11.040077	С	0.140686	9.404031	10.79644
Н	-0.788954	10.383945	11.870819	Н	0.455359	10.081817	11.585121
С	-1.828411	8.791	10.861163	С	-1.042663	8.679788	10.929042
Н	-2.670901	8.797616	11.54628	Н	-1.659202	8.802848	11.814636
С	-1.803809	7.884929	9.808214	С	-1.441826	7.798949	9.932419
Н	-2.618218	7.179698	9.675415	Н	-2.366001	7.241747	10.037967
С	-3.568254	6.168598	5.303367	С	-3.882269	6.236257	5.390992
Н	-2.855729	5.807742	6.03419	Н	-3.077585	5.744002	5.920119
С	-4.632446	5.387017	4.889527	С	-5.085802	5.587946	5.173799
Н	-4.7563	4.390545	5.297954	Н	-5.213233	4.570716	5.526161
С	-5.514684	5.91214	3.947543	С	-6.096077	6.268909	4.499895
Н	-6.354547	5.325671	3.587047	Н	-7.052137	5.793162	4.30265
С	-5.313134	7.200091	3.484932	С	-5.863684	7.569616	4.089458
Н	-5.995414	7.637455	2.765482	Н	-6.634733	8.127736	3.571258
С	-4.229762	7.955215	3.948786	С	-4.631003	8.181273	4.342942
С	-3.954089	9.342532	3.609029	С	-4.282738	9.549713	3.996923
С	-4.796389	10.116384	2.797821	С	-5.182832	10.453298	3.416279
Н	-5.679045	9.679491	2.337642	Н	-6.202472	10.152281	3.189107
С	-4.520022	11.457971	2.595397	С	-4.781512	11.750461	3.142687
Н	-5.17338	12.063963	1.97467	Н	-5.477379	12.457397	2.700699
С	-3.39811	12.023363	3.206366	С	-3.474476	12.138739	3.447351
Н	-3.176536	13.076738	3.054424	Н	-3.151058	13.15402	3.231595
С	-2.557743	11.253001	4.001149	С	-2.581868	11.24288	4.022966
Н	-1.686953	11.722454	4.44813	Н	-1.572441	11.579136	4.239304
С	-2.80143	9.891569	4.218484	C	-2.956795	9.924316	4.315036
С	0.943074	9.893173	5.56456	С	0.878234	9.711101	4.954378
Н	1.184366	9.081452	4.887787	Н	0.958418	8.933785	4.204502
С	1.884604	10.81782	5.981084	C	1.915166	10.595143	5.198326
Н	2.905472	10.748189	5.622477	Н	2.834315	10.51546	4.628948
С	1.479723	11.825757	6.856756	C	1.738562	11.571738	6.177028

Electronic Supplementary Information for RSC Advances This journal is © the Royal Society of Chemistry 20XX

Н	2.183733	12.581925	7.191539	Н	2.524139	12.290929	6.389436
C	0.174965	11.834894	7.317729	C	0.551294	11.604574	6.88758
Н	-0.150998	12.582343	8.031665	Н	0.398598	12.338553	7.670191
C	-0.729853	10.855601	6.890934	C	-0.459759	10.67704	6.614336
C	-2.083332	10.65945	7.386272	C	-1.71912	10.550992	7.333335
C	-2.684838	11.478498	8.34922	C	-2.088312	11.369793	8.406999
Н	-2.164399	12.349484	8.739139	Н	-1.443347	12.181035	8.734461
C	-3.955551	11.180155	8.81538	C	-3.286801	11.146988	9.067406
Н	-4.428558	11.814782	9.55875	Н	-3.578774	11.782354	9.898174
C	-4.618418	10.055711	8.319718	C	-4.110094	10.097817	8.655904
Н	-5.616059	9.817825	8.681704	Н	-5.050691	9.918349	9.171502
C	-4.022824	9.241975	7.360839	C	-3.743391	9.282731	7.589116
Н	-4.573339	8.383906	6.984756	Н	-4.40946	8.47898	7.288146
C	-2.743096	9.519001	6.865097	C	-2.543101	9.486762	6.899092