Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Scheme S1. Synthesis of 4'-(*p*-formylphenyl)-2,2':6',2"-terpyridine.

Figure S1. ESI Mass spectrum 4'-(*p*-formylphenyl)-2,2':6',2"-terpyridine.

Figure S2. ¹H NMR spectrum of 4'-(*p*-formylphenyl)-2,2':6',2"-terpyridine in CDCl₃.

Scheme S2. Synthesis of 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-imidazo[4,5-<math>f][1,10]phenanthroline (ttpy-Izphen).

Figure S4. ¹H NMR spectrum of ttpy-Izphen in DMSO-*d*₆.

[(ttpy-Izphen)Ru(bpy)₂](ClO₄)₂ (1). A solution of the ttpy-Izphen (0.92 g, 1.76 mmol) and [Ru(bpy)₂Cl₂] (0.84 g, 1.76 mmol) in ethylene glycol (50 mL) was refluxed with stirring for 6 h. The dark red solution was cooled to room temperature, water (500 mL) was added, and filtered. An aqueous solution of sodium perchlorate was added to the filtrate with stirring whereupon a black solid separated out. The compound was filtered, washed with water, dried in vacuo and recrystallised in hot acetonitrile. Black crystalline solid (0.90 g, 44%). IR (KBr, v_{max}/cm^{-1}): 3391 v_s(N-H), 3067 v_s(C-H) (aromatic), 1601 v_s(C=N), 1443 v_s(C-H) (pyridine), 1087 v(ClO₄), 794 (β-ring) (pyridine). ¹H NMR (500 MHz, DMSO-*d*₆, 298 K): δ 8.88 (dd, 4H, *J* = 8.5, 8.5, *H*₄, *H*₄·), 8.76 (d, 2H, *H*_c), 8.70 (d, 2H, *H*_g), 8.51 (d, 2H, *J* = 7.5, *H*_h), 8.38 (d, *J* = 7, 2H, *H*_f), 8.23 (t, *J* = 8, 7, 4H, *H*₃), 8.14 (t, *J* = 7.5, 8, 2H, *H*₃·), 8.10 (d, 2H, *H*_a), 8.07 (d, 2H, *H*_e), 7.88 (m, 6H, *H*_i, *H*_k, *H*₁), 7.62 (t, 4H, *H*₁·, *H*₂), 7.46 (m, 6H, *H*_b, *H*_j, *H*₂·). ESI MS: *m*/z 470 [M-2ClO₄]²⁺ (C₅₄H₃₇N₁₁Ru)²⁺.

Scheme S3. Synthesis of [(ttpy-Izphen)Ru(bpy)₂](ClO₄)₂ (1).

Figure S6. ESI Mass spectrum of 1.

Figure S8. ¹H-¹H COSY spectrum of **1**.

 $[Ru((ttpy-Izphen)Ru(bpy)_2)_2](CIO_4)_6$ (3). A solution of 1 (0.20 g, 0.16 mmol) and RuCl₃.H₂O (0.04 g, 0.18 mmol) in methanol (100 mL) was refluxed for 6 h. The reaction mixture was cooled to room temperature, and the red solid that separated out was filtered, washed with water and dried in vacuo to give 2 as a red powder (0.14 g, 58%). A solution of 2 (0.14 g, 0.10 mmol) and 1 (0.12 g, 0.10 mmol) in methanol (100 mL) was refluxed and stirred in the presence of few drops of N-methyl morpholine under argon atmosphere for 3 h. The dark red solution was cooled to room temperature and filtered. An aqueous solution of sodium perchlorate was added to the filtrate with stirring whereupon a black solid separated out. The compound was filtered, washed with water, dried in vacuo and recrystallised in hot CH₃CN. Black crystalline solid (0.24 g, 84%). IR (KBr, v_{max}/cm⁻¹): 3403 v_s(N-H), 3067, 2926 v_s(C-H) (aromatic), 1606 v(C=N), 1408 v_s (C-H) (pyridine), 1087 v(ClO₄), 763 (β -ring) (pyridine), 627 (C-C) (ring). ¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 9.63 (s, 2H, H_g), 9.19 (d, 2H, H_h), 8.92-8.75 (br, 8H, H_c , H_f , H_4 , $H_{4'}$), 8.25 (t, 2H, H₃), 8.14-8.08 (br, 6H, H_i, H_k, H₃), 7.97 (br, 2H, H_a, H_e), 7.88 (nr, 2H, H₁), 7.67-7.62 (br, 6H, H_b , $H_{1'}$, H_2), 7.40 (t, 2H, H_i), 7.34 (t, 2H, $H_{2'}$). ESI MS: m/z 694 [M-5ClO₄]³⁺ $(C_{108}H_{74}N_{22}ClO_4Ru_3)^{3+}$, 495 $[M-6ClO_4]^{4+}$ $(C_{108}H_{74}N_{22}Ru_3)^{4+}$, 397 $[M-6ClO_4]^{5+}$ $(C_{108}H_{74}N_{22}Ru_3)^{5+}$, 331 [M-6ClO₄]⁶⁺ $(C_{108}H_{74}N_{22}Ru_3)^{6+}$.

Scheme S4. Synthesis of $[Ru((ttpy-Izphen)Ru(bpy)_2)_2](ClO_4)_6$ (3).

Figure S9. ESI Mass spectrum of 3.

Figure S10. ¹H NMR spectrum of 3 in DMSO- d_6 .

Figure S11. ¹H-¹H COSY spectrum of **3**.

Figure S12. (a) The absorption spectrum of 1 (black) and 3 (red). (b) Emission spectrum of 1 and 3 in CH₃CN at 298 K (* denotes the Raman peak of CH₃CN); inset: excitation spectrum.

Figure S13. Cyclic voltammogram of 1 (bottom) and 3 (top) on a glassy carbon millielectrode in CH_3CN (Et_4NClO_4) versus Ag/Ag^+ at 25 °C.

Figure S14. Square wave voltammogram of **1** and **3** on a glassy carbon millielectrode in CH_3CN (Et₄NClO₄) versus Ag/Ag⁺ at 25 °C.

 Table S1. Electrochemical Data^a

	$E_{1/2}(V)$	
Compound	oxidation	reduction ^b
1	1.36	-0.68, -1.28, -1.38, -1.64, -1.84
3	0.86, 1.34	-0.82, -1.45, -1.70, -1.92

^{*a*}The data are computed from cyclic voltammogram recorded on a glassy carbon millielectrode in acetonitrile (10⁻³ M) using tetraethylammonium perchlorate as the supporting electrolyte (0.1 M) at 298 K at the scan rate of 100 mV s⁻¹. Potentials are reported in volts versus Ag/Ag⁺. ^{*b*}E_{1/2} values obtained from square wave voltammetry.

Scheme S5. Successive deprotonation steps of 3.

Figure S15. The absorption spectra of **3** (5 μ M) in acetonitrile/Britton-Robinson buffer solution (3:2, v/v) as a function of pH: (a) pH 2.15-3.59, (b) pH 8.06-9.74. Insets: molar absorptivity (ϵ) at 428 and 495 nm as a function of pH.

Figure S16. The emission spectra of **3** (5.0 μ M) in acetonitrile/Britton-Robinson buffer (3:2, v/v) as a function of pH: (a) pH 2.15-3.59, (b) pH 8.06-9.74. Insets: relative emission intensity at 600 nm ($\lambda_{ex} = 455$ nm) as a function of pH.