Electronic Supplementary Information for

An *rht*-type metal-organic framework constructed from an unsymmetrical ligand exhibiting high hydrogen uptake capability

Jian Li,‡^{*a*} Pei-Zhou Li,‡^{*b*} Qiu-Yan Li,^{*a*} Yang Cao,^{*a*} Han Lu,^{*a*} Hui Wu,^{*c*} Fei Li,^{*d*} Yanhui Shi,^{*a*} Xiao-Jun Wang*^{*a*} and Yanli Zhao*^{*b*}

^a School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China. E-mail: xjwang@jsnu.edu.cn

^b Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore. E-mail: zhaoyanli@ntu.edu.sg

^c Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, P. R. China.

^d Department of Chemistry & Chemical Biology, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM, 87131-0001, USA.

‡ These authors contributed equally to this work.

Scheme S1. Synthetic route for ligand **H6-1**. EDC = 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide; THF = tetrahydrofuran; TMSA = trimethylsilylactylene; TEA = triethylamine; TFA = trifluoracetic acid.

Fig. S1 The photograph of crystals of as-synthesized Cu-ABTA, showing they have good and regular morphologies and shapes.

Fig. S2 The zoomed-in comparison of PXRD patterns (2Theta = 2-21°) of as-synthesized MOF **Cu-ABAT** (upper) and simulation from MOF **NTU-105** (bottom) single crystal data. Although some of peaks in **NTU-105** (3' and 3"; 4' and 4"; 12' and 12"; 13' and 13"; 21' and 21") are merged into corresponding one peak in **Cu-ABTA**, mainly due to the different organic ligand in the two MOFs. However, most of the position of main peaks matches very well. This indicates that the overall framework structure of **Cu-ABTA** is the same as that of MOF **NTU-105**.

Fig. S3 Experimental (black), calculated (red), and difference (green below observed and calculated patterns) X-ray powder diffraction profiles for **Cu-ABTA**. All diffraction patterns were indexed using DICVOL9113 to obtain lattice parameters that were subsequently refined in a Pawley fit. A modified Thompson-Cox-Hastings pseudo-Voigt profile function with a simple axial correction was used in TOPAS (Topas V3.0: General Profile and Structure Analysis Software for Powder Diffraction Data Bruker AXS Ltd, 2004). The cell parameters are *a* = 30. 03 Å, *b* = 30.03 Å, *c* = 43.11 Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$ with a tetragonal space group *I4/m*, which are close to these of **NTU-105**. The results of PXRD measurements and simulation indicate that **Cu-ABTA** still possesses the same (3,24)-connected *rht*-framework as our reported MOF **NTU-105**.

Fig. S4 TGA plot of as-synthesized (upper) and desolvated (bottom) MOF **Cu-ABTA**. The initial weight loss (red line) of activated sample can be attributed to the readsorbed water during sample weighing. This suggests the framework was stable up to ~250 °C, which is similar to **NTU-105**.

Fig. S5 XRD pattern of desolvated Cu-ABTA (indicating the framework was retained well after activation).

Fig. S6 Pore-size distribution plot for **Cu-ABTA** as calculated from experimental N₂ adsorption isotherm using the nonlocal denity functional theory (NLDFT).

Fig. S7 N_2 sorption isotherm (left) at 77 K and pore-size distribution plot (right) for **NTU-105** as calculated from experimental N_2 adsorption isotherm using the NLDFT.

Fig. S8 H₂ adsorption isotherms (left) and isosteric heat of H₂ adsorption (right) for **NTU-105** calculated from the adsorption isotherms at 77 K and 78 K.

Fig. S9 Another three hydrogen sorption measurements for MOF **Cu-ABTA** (and corresponding Q_{st} calculated from the adsorption isotherms at 77 K and 78 K) by using different samples every time to avoid the accidental error. These indicated the good reproducibility.

Fig. S10 Another three hydrogen sorption measurements for MOF **NTU-105** (and corresponding Q_{st} calculated from the adsorption isotherms at 77 K and 78 K) by using different samples every time to avoid the accidental error. These indicated the good reproducibility.

Fig. S11 Two hydrogen sorption measurements for MOF **Cu-TPBTM** (the ligand is connected by three amide groups, *J. Am. Chem. Soc.*, 2011, **133**, 748.) (and corresponding *Q*_{st} calculated from the adsorption isotherms at 77 K and 78 K) by using two different samples.

Fig. S12 The comparison of Q_{st} for hydrogen adsorption of MOFs **Cu-ABTA**, **NTU-105** and **Cu-TPBTM**. As shown in **Fig.** S9-12, although there are no huge differences in the amount of hydrogen gas uptake among these three MOFs, however, some differences of the isosteric heat of adsorption (Q_{st}) are presented. The results show that the Q_{st} of our reported MOF **Cu-ABTA** is higher than both of **NTU-105** and **Cu-TPBTM** instead of in between of them (Cu-ABTA > NTU-105 > Cu-TPBTM).

Fig. S13 CO₂ adsorption isotherms (left) and isosteric heat of CO₂ absorption (right) for **NTU-105** calculated from the adsorption isotherms at 273 K and 298 K.

Fig. S14 Comparison of isosteric heat for CO₂ adsorption of MOF **Cu-ABTA** and **NTU-105** under the same uptake amount.

Scheme S2. The chemical structure of reported C_3 -symmetric ligands used in constructing *rht*-type MOFs.

MOF [ligand]	$S_{\text{BET}} \left[\text{m}^2 \text{g}^{-1} \right]^a$	$V_{\text{pore}} [\text{cm}^3 \text{g}^{-1}]^a$	H ₂ uptake $[wt\%]^b$	CO_2 uptake $[wt\%]^c$	ref.
Cu-ABTA [H6-1]	2840	1.19	2.75	30.1	This work
NTU-105 ^d [L1]	3543	1.33	2.75	36.7	S1
Cu-TDPAT ^e [L2]	1938	0.93	2.65	44.5	S2
Cu-TPBTM [L3]	3160	1.27	_	42.6	83
NU-100 ^f [L4]	6143	2.82	1.82	12.3 ^g	S4
NOTT-112 [L5]	3800	1.62	2.3	_	85
PCN-68 ^h [L6]	5109	2.13	1.87	_	S6
PCN-66 [L7]	4000	1.63	1.79	_	S6,S7
PCN-61 [L8]	3000	1.36	2.25	_	S6,S7
PCN-69 ⁱ [L9]	3989	2.17	1.72	_	S8
Cu-TATB [L10]	3360	1.91	_	17.3	S9
Cu-BTB [L11]	3288	1.77	_	17.2	S9
NU-111 [L12]	5000	2.38	2.1	_	S10
rht-MOF-9 [L13]	2420 ^j	1.01 ^j	2.72	25.3	S11

Table S1. Summary of the porosities, and gas uptake capacities of various *rth*-type MOFs.

^{*a*}calculated from N₂ isotherms at 77 K; ^{*b*}at 77 K, 1 atm; ^{*c*}at 273 K, 1 atm; ^{*d*}also known as NOTT-122^{S12} or NU-125^{S13}; ^{*e*}also known as rth-MOF-7^{S14}; ^{*f*}also known as PCN-610^{S6}; ^{*g*}data at 298 K, 1 atm, due to the absence of the data at 273 K, 1 atm; ^{*h*}also known as NOTT-116^{S15}; ^{*i*}also known as NOTT-119^{S16}; ^{*j*}calculated from Ar isotherms at 87 K

References:

- S1. X.-J. Wang, P.-Z. Li, Y. Chen, Q. Zhang, H. Zhang, X. X. Chan, R. Ganguly, Y. Li, J. Jiang and Y. Zhao, *Sci. Rep.*, 2013, 3, 1149.
- S2. B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y. J. Chabal, Z. Lai,
 Y. Han, Z. Shi, S. Feng and J. Li, *Angew. Chem. Int. Ed.*, 2012, 51, 1412.
- S3. B. Zheng, J. Bai, J. Duan, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748.
- S4. O. K. Farha, A. Özgür Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *Nat Chem*, 2010, 2, 944.

- S5. Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly, N. R. Champness, P. Hubberstey and M. Schroder, *Chem. Commun.*, 2009, 1025.
- S6. D. Yuan, D. Zhao, D. Sun and H.-C. Zhou, Angew. Chem. Int. Ed., 2010, 49, 5357.
- S7. D. Zhao, D. Yuan, D. Sun and H.-C. Zhou, J. Am. Chem. Soc., 2009, 131, 9186.
- S8. D. Yuan, D. Zhao and H.-C. Zhou, Inorg. Chem., 2011, 50, 10528.
- S9. B. Zheng, Z. Yang, J. Bai, Y. Li and S. Li, Chem. Commun., 2012, 48, 7025.
- S10. O. K. Farha, C. E. Wilmer, I. Eryazici, B. G. Hauser, P. A. Parilla, K. O'Neill, A. A. Sarjeant, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *J. Am. Chem. Soc.*, 2012, **134**, 9860.
- S11. R. Luebke, Ł. J. Weseliński, Y. Belmabkhout, Z. Chen, Ł. Wojtas and M. Eddaoudi, *Cryst. Growth Des.*, 2014, 14, 414.
- S12. Y. Yan, M. Suyetin, E. Bichoutskaia, A. J. Blake, D. R. Allan, S. A. Barnett and M. Schroder, *Chem. Sci.*, 2013, 4, 1731.
- S13. C. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr and J. T. Hupp, *Energy Environ. Sci.*, 2013, 6, 1158.
- S14. R. Luebke, J. F. Eubank, A. J. Cairns, Y. Belmabkhout, L. Wojtas and M. Eddaoudi, *Chem. Commun.*, 2012, 48, 1455.
- S15. Y. Yan, I. Telepeni, S. Yang, X. Lin, W. Kockelmann, A. Dailly, A. J. Blake, W. Lewis, G. S. Walker, D. R. Allan, S. A. Barnett, N. R. Champness and M. Schröder, *J. Am. Chem. Soc.*, 2010, **132**, 4092.
- S16. Y. Yan, S. Yang, A. J. Blake, W. Lewis, E. Poirier, S. A. Barnett, N. R. Champness and M. Schroder, *Chem. Commun.*, 2011, 47, 9995.