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Scheme S1. Synthetic route for ligand H6-1. EDC = 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide; THF = 

tetrahydrofuran; TMSA = trimethylsilylactylene; TEA = triethylamine; TFA = trifluoracetic acid.  

 

 

Fig. S1 The photograph of crystals of as-synthesized Cu-ABTA, showing they have good and regular 

morphologies and shapes.  
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Fig. S2 The zoomed-in comparison of PXRD patterns (2Theta = 2-21°) of as-synthesized MOF Cu-ABAT (upper) 

and simulation from MOF NTU-105 (bottom) single crystal data. Although some of peaks in NTU-105 (3’ and 3”; 

4’ and 4”; 12’ and 12”; 13’ and 13”; 21’ and 21”) are merged into corresponding one peak in Cu-ABTA, mainly due 

to the different organic ligand in the two MOFs. However, most of the position of main peaks matches very well. 

This indicates that the overall framework structure of Cu-ABTA is the same as that of MOF NTU-105.  

 

Fig. S3 Experimental (black), calculated (red), and difference (green below observed and calculated patterns) X-ray 

powder diffraction profiles for Cu-ABTA. All diffraction patterns were indexed using DICVOL9113 to obtain 

lattice parameters that were subsequently refined in a Pawley fit. A modified Thompson-Cox-Hastings 

pseudo-Voigt profile function with a simple axial correction was used in TOPAS (Topas V3.0: General Profile and 

Structure Analysis Software for Powder Diffraction Data Bruker AXS Ltd, 2004). The cell parameters are a = 30. 

03 Å, b = 30.03 Å, c = 43.11 Å, α = 90°, β = 90°, γ = 90° with a tetragonal space group I4/m, which are close to 

these of NTU-105. The results of PXRD measurements and simulation indicate that Cu-ABTA still possesses the 

same (3,24)-connected rht-framework as our reported MOF NTU-105. 
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Fig. S4 TGA plot of as-synthesized (upper) and desolvated (bottom) MOF Cu-ABTA. The initial weight loss (red 

line) of activated sample can be attributed to the readsorbed water during sample weighing. This suggests the 

framework was stable up to ~250 °C, which is similar to NTU-105.   

 

 

Fig. S5 XRD pattern of desolvated Cu-ABTA (indicating the framework was retained well after activation).  
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Fig. S6 Pore-size distribution plot for Cu-ABTA as calculated from experimental N2 adsorption isotherm using the 

nonlocal denity functional theory (NLDFT). 

 

Fig. S7 N2 sorption isotherm (left) at 77 K and pore-size distribution plot (right) for NTU-105 as calculated from 

experimental N2 adsorption isotherm using the NLDFT. 

 

Fig. S8 H2 adsorption isotherms (left) and isosteric heat of H2 adsorption (right) for NTU-105 calculated from the 

adsorption isotherms at 77 K and 78 K.  
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Fig. S9 Another three hydrogen sorption measurements for MOF Cu-ABTA (and corresponding Qst calculated 

from the adsorption isotherms at 77 K and 78 K) by using different samples every time to avoid the accidental error. 

These indicated the good reproducibility.  

 

Fig. S10 Another three hydrogen sorption measurements for MOF NTU-105 (and corresponding Qst calculated 

from the adsorption isotherms at 77 K and 78 K) by using different samples every time to avoid the accidental error. 

These indicated the good reproducibility. 
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Fig. S11 Two hydrogen sorption measurements for MOF Cu-TPBTM (the ligand is connected by three amide 

groups, J. Am. Chem. Soc., 2011, 133, 748.) (and corresponding Qst calculated from the adsorption isotherms at 77 

K and 78 K) by using two different samples.  

 

Fig. S12 The comparison of Qst for hydrogen adsorption of MOFs Cu-ABTA, NTU-105 and Cu-TPBTM. As 

shown in Fig. S9-12, although there are no huge differences in the amount of hydrogen gas uptake among these 

three MOFs, however, some differences of the isosteric heat of adsorption (Qst) are presented. The results show that 

the Qst of our reported MOF Cu-ABTA is higher than both of NTU-105 and Cu-TPBTM instead of in between of 

them (Cu-ABTA > NTU-105 > Cu-TPBTM). 
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Fig. S13 CO2 adsorption isotherms (left) and isosteric heat of CO2 absorption (right) for NTU-105 calculated from 

the adsorption isotherms at 273 K and 298 K. 

 

Fig. S14 Comparison of isosteric heat for CO2 adsorption of MOF Cu-ABTA and NTU-105 under the same uptake 

amount. 
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Scheme S2. The chemical structure of reported C3-symmetric ligands used in constructing rht-type MOFs.  
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Table S1. Summary of the porosities, and gas uptake capacities of various rth-type MOFs. 

MOF [ligand] SBET [m2 g-1]a Vpore [cm3 g-1]a H2 uptake [wt%]b CO2 uptake [wt%]c ref. 

Cu-ABTA [H6-1] 

NTU-105d [L1] 

Cu-TDPATe [L2] 

Cu-TPBTM [L3] 

NU-100f [L4] 

NOTT-112 [L5] 

PCN-68h[L6] 

PCN-66 [L7] 

PCN-61 [L8] 

PCN-69i [L9] 

Cu-TATB [L10] 

Cu-BTB [L11] 

NU-111 [L12] 

rht-MOF-9 [L13] 

2840 

3543 

1938 

3160 

6143 

3800 

5109 

4000 

3000 

3989 

3360 

3288 

5000 

2420j 

1.19 

1.33 

0.93 

1.27 

2.82 

1.62 

2.13 

1.63 

1.36 

2.17 

1.91 

1.77 

2.38 

1.01j 

2.75 

2.75 

2.65 

— 

1.82 

2.3 

1.87 

1.79 

2.25 

1.72 

— 

— 

2.1 

2.72 

30.1 

36.7 

44.5 

42.6 

12.3g 

— 

— 

— 

— 

— 

17.3 

17.2 

— 

25.3 

This work 

S1 

S2 

S3 

S4 

S5 

S6 

S6,S7 

S6,S7 

S8 

S9 

S9 

S10 

S11 

acalculated from N2 isotherms at 77 K; bat 77 K, 1 atm; cat 273 K, 1 atm; dalso known as NOTT-122S12 or NU-125S13; ealso known as 

rth-MOF-7S14; falso known as PCN-610S6; gdata at 298 K, 1 atm, due to the absence of the data at 273 K, 1 atm; halso known as 

NOTT-116S15; ialso known as NOTT-119S16; jcalculated from Ar isotherms at 87 K 
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