Synthesis of Dibenzoxanthene and Acridine Derivatives Catalyzed by 1,3-Disulfonic Acid Imidazolium Carboxylate Ionic Liquids

Arup Kumar Dutta, Pinky Gogoi and Ruli Borah*

Table of contents

General Information (page no. 2)

Spectral data of ionic liquids 1, 2 and 3 (page no. 2)

Spectral data of new derivatives of 1,8-dioxo-decahydroacrdine (4) and dibenzoxanthene (5) (page no. 3)

Soft copies ¹H NMR and ¹³C NMR spectra of ionic liquids (page no. 4-9)

Soft copies of ¹H NMR and ¹³C NMR spectra of 1,8-dioxo-decahydroacrdine (4) and dibenzoxanthene (5) (page no. 10- 19)

General Information

All chemicals were purchased from chemical suppliers and used without any purification. Thin layer chromatography was monitored on glass plate using Merck silica gel. The ¹HNMR and ¹³CNMR were run on a JEOL 400 MHz spectrometer (in ppm) in DMSO-d₆ and CDCl₃ solvents. FT-IR spectra were recorded on a Nicolet Impact-410 spectrometer. The Hammett plot of the ILs was measured on an UV 2550 spectrophotometer using 4-nitroaniline as basic indicator. The p*K*a of the ionic liquids were determined by digital pH meter 802. The thermal stability of the three ionic liquids was performed on Shimadzu TGA 50. Perkin Elmer 20 analyzer was utilized for elemental analysis of all compounds. Melting points were recorded on a Buchi-545 apparatus. The ¹H NMR and ¹³C NMR spectra of new ionic liquids and selected dibenzoxanthene **4** and 1,8-dioxo-octahydroacridine derivatives **5** were included in supplimentary file.

Spectral data of ionic liquids 1, 2 and 3

 $[DISM][CH_{3}COO]^{-}(1): Light reddish oil, 98 \% yield; FT-IR (KBr) : 3556, 3453, 3217, 1709, 1644, 1592, 1435, 1180, 1048, 878, 764, 586 cm^{-1}; ¹H NMR(DMSO-d6, 400 MHz): 14.17(s, 1H), 11.30 (s, 1H), 8.91 (s, 1H), 7.53(s, 2H), 1.79 (s, 3H); ¹³C NMR (DMSO-d6, 100 MHz): 172.6, 134.7, 119.8, 21.5; CHN analysis(%): C₅H₈O₈S₂N₂, Cal. C 20.83, H 2.80, N 9.70; Found C 20.91, H 2.84, N 9.73.$

[DISM][CCl₃COO]⁻ (**2**): Dark reddish oil, 100 % yield; FT-IR (KBr): 3416, 3316, 1748, 1639, 1591, 1433, 1192, 1048, 876, 764, 688, 585 cm⁻¹; ¹H NMR(DMSO-d6, 400 MHz): 14.2(s, 1H); 12.77 (s,1H), 8.87(s, 1H), 7.46(s, 2H), ¹³C NMR (DMSO-d6, 100 MHz): 163.05, 134.5, 120.03, 79.6 ;CHN analysis(%): $C_5H_5O_8S_2N_2Cl_3$, Cal. C 15.35; H 1.27, N 7.15; Found C 15.38, H1.30, N 7.19.

 $[DSIM][CF_{3}COO]^{-}(3) : \text{Reddish oil, 100 \% yield; FT-IR (KBr) : 3531, 3420, 1751, 1640, 1588, 1432, 1178, 1054, 875, 765, 694, 587 cm^{-1}; ^{1}H NMR(DMSO-d6, 400 MHz): 14.14(s, 1H), 13.42 (s,1H), 8.89(s, 1H), 7.48(s, 2H); ^{13}C NMR (DMSO-d6, 100 MHz): 158.6, 134.2, 134.6, 119.7, 62.4 ; CHN analysis(%): C_{5}H_{5}O_{8}S_{2}N_{2}F_{3}$, Cal. C 17.69, H 1.51, N 8.16; Found C17.72, H 1.54, N 8.19.

Spectral data of new derivatives of 1,8-dioxo-decahydroacrdine (4) and dibenzoxanthene (5)

[2] Decahydro-3,3,6,6-tetramethyl-9-(naphthalen-2-yl)acridine-1,8(5*H*,8a*H*)-dione (table 3, entry 7, **4g**, new): Grey ; FT-IR (KBr) cm⁻¹ : 3768, 2956, 2875, 1666, 1462, 1361, 1195, 1144, 999, 928, 800, 698; ¹H NMR (CDCl₃, 400 MHz): 8.81(s, 1H),7.75(d, *J*=8.2Hz,1H), 7.62-7.60(m, 2H), 7.44(m, 1H), 7.30 (m,1H), 7.20(s, 1H), 5.52(s, 1H), 2.5(s, 4H), 2.22-2.06(m, 4H), 1.19(s, 6H), 0.95 (s, 6H);¹³C NMR (CDCl₃, 100 MHz) : 196.7, 162.2, 133.6, 131.7, 128.2, 127.5, 125.9, 125.7, 124.9, 116.9, 50.7, 41.0, 32.3, 29.4, 27.4; CHN analysis (%) : $C_{27}H_{29}NO_2$, Cal. C 81.2,. H 7.27, N 3.51; Found C 81.18, H 7.3, N 3.50.

[3] 3,4,6,7-Tetrahydro-3,3,6,6-tetramethyl-9-styrylacridine-1,8 (2H,5H,9H,10H)-dione) (table 3, entry 8, **4h**): Grey; FT-IR (KBr) cm⁻¹: 3429, 2934, 1640, 1628, 1540, 1392, 1078, 1026, 874, 773; ¹H NMR (CDCl₃, 400 MHz): 7.22-7.27 (m, 5H), 6.27-6.31(m, 2H), 4.41(d, J= 5.5 Hz,1H), 2.44(s, 4H), 2.29(s, 4H), 1.12(s, 12H); ¹³C NMR (CDCl₃, 100 MHz): 196.5, 163.1, 137.2, 131.3, 130.4, 128.3, 127.1, 126.3, 50.8, 40.9, 32.2, 29.2, 27.9, 27.6; CHN analysis (%): C₂₅H₂₉NO₂, Cal. C 80, H 7.73,N 3.73; Found C 80.12, H 7.76, N 3,75.

[4] 14-Dihydro-dibenzo[a,j] xanthene (table 4, entry 6, **5f** ,new): White ; FT-IR (KBr) cm⁻¹ : 3057, 1589, 1510, 1455, 1396, 1240, 1171, 1069, 955, 854, 802, 744; ¹H NMR (CDCl₃, 400 MHz): 8.02 (d, *J*=8.2Hz,2H), 7.85(d, *J*=7.8Hz,2H), 7.76(d, *J*=9.2Hz,2H), 7.63(m,2H), 7.46(t, *J*=7.3Hz,2H), 7.31(d, *J*=8.7Hz,2H), 4.56(s,2H) ; ¹³C NMR (CDCl₃, 100 MHz) : 147.9, 132.2, 130.2, 128.5, 128.4, 126.8, 124.2, 122.4, 117.8, 111.0, 22.4; CHN analysis (%) : $C_{21}H_{14}O$, Cal. C 89.36, H 4.97; Found C 89.38, H 5.01.

[5] 14-Naphthyl-14*H*-dibenzo [a.j] xanthene(table 4,entry 7, **5g** ,new) :Brown solid ; FT-IR (KBr) cm⁻¹ : 3058, 2378, 1591, 1509, 1398, 1356, 1242, 1158, 1070, 959, 807, 739; ¹H NMR (CDCl₃, 400 MHz): 8.47 (d, *J*=8.7Hz,2H),8.01 (s,1H),7.75-7.78(m,5H), 7.48-7.58(m, 7H), 7.27-7.37(m,4 H), 6.63(s, 1H); ¹³C NMR (CDCl₃, 100 MHz) : 148.7, 142.3, 133, 132, 131.1, 128.9, 128.8, 127.8, 127.4, 126.8, 126.5, 124.2, 122.7, 117.9, 117, 38.3; CHN analysis (%): C₃₁H₂₀O , Cal. C, 91.18, H 4.9; Found C 91.16, H 4.93.

Spectra of ionic liquids:

[DSIM][CH₃COO]⁻ 1

 $[DSIM][CCI_3COO]^2$ 2

¹³C NMR

 $[DSIM][CCl_3COO]^-$

¹³C NMR

[DSIM][CF₃COO]⁻

Spectra of 1, 8-dioxooctahydroacridine 4 and dibenzoxanthene derivatives 5 :

Table 3, entry 6 4f

Table 3, entry 7 4g

Table 3, entry 8, 4h

Table 4, entry 6, 5f

Table 4, entry 7, 5g

