Supporting Information

Inkpen-printed reusable colorimetric sensors for detection of Hg(II)

ChatthaiKaewtong,*a Yuwapon Uppa,*b MangkornSrisa-ard, BunchaPulpokac and ThawatchaiTuntulanic

^aNanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand.Fax: 66 0437 54246; Tel: 66 0437 54246; E-mail: <u>kchatthai@gmail.com</u>

^bDepartment of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan Khon Kaen Campus,

Khonkaen 40000, Thailand. Fax: 66 0437 54246; Tel: 66 0433 36371; E-mail: <u>note.yy@gmail.com</u>

^cSupramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Fax: 66 0221 87598; Tel: 66 0221 87643.

Contents

~
3
3
4
4
5
5
5
-
/
3
3

sensors for detection of Hg^{2+} (average responses and standard deviation for n = 3 paper sensors).

Scheme S1. Synthetic pathways of branched poly(L-lactide)-maltitol (B-PLLA-M)

Figure S1.¹H NMR spectra of branched poly(L-lactide)-maltitol

Figure S2. FTIR spectra of branched poly(L-lactide)-maltitol

Figure S3. TGA curves of branched poly(L-lactide)-maltitol

Figure S4. The variation weigh ratio of the composition of the binder (branched poly(L-lactide)maltitol) and the chemosensor (L2) in the presence of Hg²⁺ 10 μ M in acetone solution; λ_{ex} = 520 nm, λ_{ex} = 580 nm.

Table S1. Solubility properties of mixing components (branched poly(L-lactide)-maltitol) 0.17 g and the chemosensor (L2) 0.21 g in various solvent.

Solvent	Mixing components
H ₂ O	insoluble
Acetone	soluble
Acetonitrile	partially soluble
Chloroform	soluble
Diethyl ether	insoluble
Dimethylformamide	soluble
Ethyl acetate	partially soluble
Hexane	insoluble
Toluene	soluble
Tetrahydrofuran	soluble
Pyridine	soluble

1) mixing of three-component

2) filling ink in highlighter pen

- 3) direct writing on ordinary paper
- 4) dipping in an aqueous solution of Hg²⁺

5) measuring the greenish color intensity using Adobe Photoshop

Figure S5. A facile pen-on-paper paradigm of inkpen-printed based reversible biodegradablecolorimetric sensor (IRBS)

Figure S6. The cross-sectional SEM images of IRBS on paper (a, b) before and (c, d) after addition of Hg^{2+} .

Figure S7. Fluorescence imaging observation of **IRBS** paper sensor before and after treated with Hg²⁺ ion solutions of various concentrations (4.0×10^{-8} M to 1.0×10^{-4} M).

Figure S8. The response calibration curves of the **IRBS** paper sensors for detection of Hg^{2+} (average responses and standard deviation for n = 3 paper sensors).