Supplementary Information

Unsubstituted Quinoidal Pyrrole and its Reaction with Oxygen, Charge Transfer and Palladium(II) Complexes via DDQ Oxidation

Debasish Ghorai^{*a*} and Ganesan Mani^{**a*}

^a Department of Chemistry, Indian Institute of Technology, Kharagpur, India 721 302

Fax: +91 3222 282252, E-mail: gmani@chem.iitkgp.ernet.in

2. NMR, IR UV-Vis and Emission Spectra

Figure S1. ¹H NMR spectrum of 2,5-bis(3,5-dimethylpyrazolylcarbonyl)pyrrole 2 in CDCl₃.

Figure S2. ¹³C{¹H} NMR spectrum of 2,5-bis(3,5-dimethylpyrazolylcarbonyl)pyrrole 2 in CDCl₃.

Figure S3. IR spectrum of 2,5-bis(3,5-dimethylpyrazolylcarbonyl)pyrrole 2 recorded as a KBr disc.

Figure S4. ¹H NMR spectrum of 5-{bis(3,5-dimethylpyrazolyl)methyl}pyrrole-2-carbaldehyde 3 in CDCl₃.

Figure S6. IR spectrum of 5-{bis-(3,5-dimethylpyrazolyl)methyl}pyrrole-2-carbaldehyde 3 recorded as a KBr disc.

Figure S7. ¹H NMR spectrum of 2-tris(3,5-dimethylpyrazolylmethyl)-5-(3,5-dimethylpyrazolylcarbonyl)pyrrole **4** in CDCl₃.

Figure S8. ¹H NMR spectrum of DDQH₂ adduct 5 in CDCl₃.

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of DDQH₂ adduct 5 in CDCl₃.

Figure S10. ¹H NMR spectrum of the DDQH₂ adduct 5 in DMSO-*d*₆.

Figure S11. IR spectrum of DDQH₂ adduct 5 recorded as a KBr disc.

Figure S12. ¹H NMR spectrum of 2,5-bis {di(3,5-dimethylpyrazolyl)methene}-2,5-dihydropyrrole **6** in DMSO- d_{δ} .

Figure S13. ¹H NMR spectrum of 2,5-bis{di(3,5-dimethylpyrazolyl)methene}-2,5-dihydropyrrole 6 in $CDCl_3$, obtained by basic Al_2O_3 method.

Figure S14. ¹³C{¹H} NMR spectrum of 2,5-bis{di(3,5-dimethylpyrazolyl)methene}-2,5-dihydropyrrole 6 in $CDCl_3$, obtained by basic Al_2O_3 method.

Figure S15. ¹H NMR spectrum of 2,5-bis{di(3,5-dimethylpyrazolyl)methene}-2,5-dihydropyrrole 6 in $CDCl_3$, obtained by NaBH₄ method.

Figure S16. ¹³C{¹H} NMR spectrum of 2,5-bis{di(3,5-dimethylpyrazolyl)methene}-2,5-dihydropyrrole 6 in CDCl₃, obtained by NaBH₄ method.

Figure S17. IR spectrum of 2,5-bis{di(3,5-dimethylpyrazolyl)methene}-2,5-dihydropyrrole 6 recorded as a KBr disc.

Figure S18. ¹H NMR spectrum of bis-(3,5-dimethylpyrazolyl)methanone 7 in CDCl₃.

Figure S19. IR spectrum of bis-(3,5-dimethylpyrazolyl)methanone 7 recorded as a KBr disc.

Figure S20. ¹H NMR spectrum of 2-(3,5-dimethylpyrazolylcarbonyl)-5-(3,5-dimethylpyrazolyl)pyrrole 8 in CDCl₃.

Figure S21. ¹³C{¹H} NMR spectrum of 2-(3,5-dimethylpyrazolylcarbonyl)-5-(3,5-dimethylpyrazolyl) pyrrole, **8** in CDCl₃.

Figure S22. IR spectrum of 2-(3,5-dimethylpyrazolylcarbonyl)-5-(3,5-dimethylpyrazolyl)pyrrole, **8** recorded as a KBr disc.

Figure S23. The ¹H NMR spectra of **6** in CDCl₃ recorded at different time intervals, showing the formation of compound **2** which has the characteristic peaks at δ 6.06 ppm and δ 7.38 ppm as the major compound along with other resonances due to the other products.

Figure S24. The change in the UV-Vis (a) and the fluorescence (b) spectra of **6** in toluene solution $(1 \times 10^{-5} \text{ M})$ upon reaction with oxygen at different time intervals under sunlight irradiation.

Figure S25. (a) The UV-vis spectrum of the adduct **5** in DMSO $(1 \times 10^{-5} \text{ M})$; (b) the emission spectrum of **5** in DMSO solution $(1 \times 10^{-5} \text{ M})$ (excitation at 420 nm).

Figure S26. The UV-vis spectrum of the adduct **5** in toluene $(1 \times 10^{-4} \text{ M})$.

Figure S27. The UV-vis spectrum of the adduct **5** in dichloromethane $(1 \times 10^{-5} \text{ M})$.

Figure S28. The solid state UV-vis spectrum of the adduct 5.

Figure S29. The UV-vis spectrum of the free base 6 in DMSO $(1 \times 10^{-5} \text{ M})$.

Figure S30. The emission spectrum of the free base 6 in DMSO solution $(1 \times 10^{-5} \text{ M})$ (excitation at 420 nm).

Figure S31. The DMSO solution of the quinoidal pyrrole molecule **6** under irradiation of (a) ordinary and (b) UV light.

Figure S32. (a) The UV-vis spectra of 6 and 9 in MeCN, showing the blue shifted λ_{max} for 9 and (b) the emission spectra of 9 showing the disappearance of fluorescence.

Figure S34. IR spectrum of $[Pd_2Cl_4{\mu-C_4H_3N-2,5-(C(Me_2pz)_2)_2-N,N,N,N}]$, 9 recorded as a KBr disc.