A New 12L-Hexagonal Perovskite Cs₄Mg₃CaF₁₂: Structural Transition Derived from the Partial Substitution of Mg²⁺ with Ca²⁺

Zheng Wang,^{*ab*} Qun Jing,^{*ab*} Min Zhang,^{*ac*} Xiaoyu Dong,^{*ab*} Shilie Pan,^{*ac*} Zhihua Yang^{*a*} ^{*a*}Key Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China ^{*b*}University of Chinese Academy of Sciences, Beijing 100049, China * To whom correspondence should be addressed. E-mail: <u>zhangmin@ms.xjb.ac.cn</u> (M. Zhang); E-mail: <u>slpan@ms.xjb.ac.cn</u> (S. Pan)

Table S1 Atomic coordinates, equivalent isotropic displacement parameters (Å²) and bond valence sum (BVS) for CMCF. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atoms	Site	S.O.F	x	у	Z	U(eq)	BVS
Cs(1)	4 <i>e</i>	1	0	0	1315(1)	16(1)	1.14
Cs(2)	4 <i>e</i>	1	6667	3333	503(1)	14(1)	1.31
Mg(1)	2b	1	3333	6667	1667	11(1)	2.46
Mg(2)	2b	1	3333	6667	751(1)	10(1)	2.20
Ca(1)	4 <i>e</i>	1	0	0	0	11(1)	1.94
F(1)	4 <i>e</i>	1	1752(2)	3505(3)	416(1)	17(1)	1.10
F(2)	4 <i>e</i>	1	570(3)	5285(2)	1231(1)	15(1)	1.18

 Table S2 Selected bond lengths (Å) for CMCF^a.

	Tuble 54 Beleeted bolk	religens (ri) for enter .	
Mg(1)-F(2)	1.9747(16)	Cs(1)-F(2)#3	3.1349(5)
Mg(1)-F(2)#15	1.9747(16)	Cs(1)-F(2)#4	3.1349(5)
Mg(1)-F(2)#3	1.9747(16)	Cs(1)-F(2)#5	3.1349(5)
Mg(1)-F(2)#16	1.9747(16)	Cs(1)-F(2)#6	3.1503(17)
Mg(1)-F(2)#7	1.9747(16)	Cs(1)-F(2)#7	3.1503(17)
Mg(1)-F(2)#17	1.9748(16)	Cs(1)-F(2)#8	3.1503(17)
Mean	1.9747	Cs(1)-F(1)#1	3.2783(18)
Mg(2)-F(1)#15	1.9737(18)	Cs(1)-F(1)#2	3.2783(18)
Mg(2)-F(1)	1.9737(18)	Cs(1)-F(1)	3.2783(18)
Mg(2)-F(1)#3	1.9737(18)	Mean	3.1742
Mg(2)-F(2)#15	2.066(2)	Cs(2)-F(2)#9	3.0229(16)
Mg(2)-F(2)	2.066(2)	Cs(2)-F(2)#2	3.0229(16)
Mg(2)-F(2)#3	2.066(2)	Cs(2)-F(2)#3	3.0229(16)
Mean	2.0199	Cs(2)-F(1)#10	3.1219(5)
Ca(1)-F(1)#22	2.2589(16)	Cs(2)-F(1)#9	3.1219(5)
Ca(1)-F(1)	2.2589(16)	Cs(2)-F(1)#2	3.1219(5)
Ca(1)-F(1)#23	2.2589(16)	Cs(2)-F(1)#11	3.1219(5)
Ca(1)-F(1)#2	2.2589(16)	Cs(2)-F(1)	3.1219(5)
Ca(1)-F(1)#13	2.2589(16)	Cs(2)-F(1)#3	3.1219(5)
Ca(1)-F(1)#1	2.2589(16)	Cs(2)-F(1)#12	3.2256(18)
Mean	2.2589	Cs(2)-F(1)#13	3.2256(18)
Cs(1)-F(2)#1	3.1349(5)	Cs(2)-F(1)#14	3.2256(18)
Cs(1)-F(2)	3.1349(5)	Mean	3.1230
Cs(1)-F(2)#2	3.1349(5)		

^{*a*} Note. Symmetry transformations used to generate equivalent atoms:

#1 -y,x-y,z	#2 -x+y,-x,z	#3 -y+1,x-y+1,z
#4 -x+y-1,-x,z	#5 x,y-1,z	#6 y-1/3,-x+y-2/3,-z+1/3
#7 x-y+2/3,x+1/	/3,-z+1/3 #8	-x-1/3,-y+1/3,-z+1/3
#9 x+1,y,z	#10 -y+1,x-y,z	#11 -x+y+1,-x+1,z
#12 x-y+1,x,-z	#13 y,-x+y,-	z #14 -x+1,-y+1,-z
#15 -x+y,-x+1,z	#16 -x+2/3	,-y+4/3,-z+1/3
#17 y-1/3,-x+y+	-1/3,-z+1/3 <i>‡</i>	\$18 -x+2/3,-y+1/3,-z+1/3
#19 x,y+1,z	#20 x+1,y+1,z	#21 x-1,y,z
#22 -x,-y,-z	#23 x-y,x,-z	#24 -x+1,-y,-z
#25 x-1,y-1,z		

Figure S1. Structure of cubic $CsMF_3$ (M = Mg and Ca).

Figure S2. Crystal structure of CMCF.

Figure S3. The bond angles of $[CaF_6]$ octahedra.

Figure S4. The typical perovskite model.

Figure S5. Infrared spectrum of CMCF.

Figure S6. Band structure of CMCF.

Figure S7. The map of charge density of CMCF.