Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting informations for the manuscript

Studies of structural diversity due to inter-/intra-molecular hydrogen bonding and photoluminescent properties in thiocarboxylate Cu(I) and Ag(I) complexes

Suryabhan Singh^{a*} and Subrato Bhattacharya^{a*}

^a Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India. Fax: +91-542-2368127; Tel: +91-542-6702451; E-mail:

sbs.bhu@gmail.com (S.S.) bhatt99@yahoo.com (S.B.)

	1	2	3	4	5	6	7	8	9
Empirical formula	$C_{45}H_{39}CuN_2OP_2S_2$	C ₂₉ H ₂₈ CuN ₂ OPS ₆	C48H39CuN2OP2S3	3 C ₄₆ H ₃₇ CuO ₃ P ₂ S ₃	C ₄₈ H ₃₉ CuO ₂ P ₂ S ₃	$C_{57}H_{46}Cu_2N_2O_2P_2S_2$	$_{3}C_{48}H_{40}Cu_{4}N_{4}O_{4}S_{12}$	$C_{96}H_{83}Ag_2NO_2P_4S_4$	$C_{215}H_{181}Ag_4N_8O_4P_8S_8$
T/K	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Crystal System	Orthorhombic	Triclinic	Monoclinic	Orthorhombic	Orthorhombic	Triclinic	Triclinic	Monoclinic	Triclinic
Space Group	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	$P2_1/c$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	<i>P</i> -1	$P2_1$	<i>P</i> -1
a/ Å	12.6998(7)	10.0157(12)	13.2247(4)	13.094(5)	13.1995(11)	12.834(8)	8.553(5)	10.3842(5)	18.1036(6)
b/Å	13.0818(8)	10.0218(12)	19.1038(6)	17.908(5)	18.078(3)	14.770(9)	11.605(5)	18.0770(10)	19.7740(8)
c/Å	24.7253(13)	18.170(2)	18.0282(6)	18.120(5)	18.115(3)	15.900(11)	14.138(5)	23.1444(11)	27.1081(9)
α/°	90	77.489(11)	90	90	90	65.78(6)	82.590(5)	90	89.880(3)
β/°	90	79.640(11)	108.708(4)	90	90	87.90(6)	83.221(5)	101.813(5)	88.550(3)
γ/°	90	66.284(12)	90	90	90	69.10(6)	86.617(5)	90	79.127(3)
V/Å ³	4107.8(4)	1621.3(3)	4314.0(2)	4249(2)	4322.7(11)	2546(3)	1380.5(11)	4252.5(4)	9526.9(6)
Ζ	4	2	4	4	4	2	1	2	2
μ(Mo–Kα)/mm ⁻¹	0.748	1.135	0.764	0.776	0.769	1.065	2.020	0.683	0.618
Reflections Collected/unique	15721/8505	20905/10588	21407/9839	13726/8994	11262 / 7191	21231/11646	10987/6259	26033/16336	82017/42830
R (int)	0.0326	0.0494	0.0286	0.0291	0.0597	0.0471	0.0553	0.0259	0.0687
Final R indices	R1 = 0.0721	R1 = 0.0660	R1 = 0.0604	R1 = 0.0556	R1 = 0.0883	R1 = 0.0632	R1 = 0.0680	R1 = 0.0416	R1 = 0.1361
[I>2σ(I)]	wR2 = 0.1770	wR2 = 0.1319	wR2 = 0.1338	wR2 = 0.1287	wR2 = 0.2207	wR2 = 0.1221	wR2 = 0.1211	wR2 = 0.0763	wR2 = 0.3479
R indices (all	R1 = 0.1115	R1 = 0.1302	R1 = 0.1002	R1 = 0.0807	R1 = 0.1331	R1 = 0.1358	R1 = 0.1532	R1 = 0.0591	R1 = 0.2115
data)	wR2 = 0.2020	wR2 = 0.1757	wR2 = 0.1591	wR2 = 0.1469	wR2 = 0.2916	wR2 = 0.1588	wR2 = 0.1626	wR2 = 0.0833	wR2 = 0.4016
GOF on F2	1.038	1.041	1.010	1.001	1.049	1.015	0.984	1.017	1.014

 Table S1 Crystal data and structure refinement of complexes

			Dand or also (in 0)			
Complex	Bond le	ngths (in A)	Bond angl	es (in °)		
1	Cu1-P1	2.3057(18)	P1-Cu1-P2	113.81(6)		
	Cu1-P2	2.3165(17)	P1-Cu1-S1	122.34(7)		
	Cu1-S1	2.365(2)	P2-Cu1-S1	98.30(7)		
	Cu1-S2	2.3903(17)	P1-Cu1-S2	106.35(7)		
	S1-C1	1 709(9)	P2-Cu1-S2	97 94(6)		
	S1 C1	1.705(5) 1.674(7)	S1 Cu1 S2	115 24(8)		
	52-C5 01 C1	1.0/4(7)	51-Cu1-52	113.34(8)		
	01-01	1.240(10)				
	N1-C3	1.359(7)				
	N2-C3	1.331(8)				
2	Cu1-S1	2.2905(11)	S1-Cu1-P1	110.76(4)		
	Cu1-P1	2.2924(10)	S1-Cu1-S5	121.52(4)		
	Cu1-85	23817(12)	P1-Cu1-S5	100.77(4)		
	Cu1-S3	2.3942(11)	S1-Cu1-S3	116 59(4)		
	S1-C1	1.716(3)	P1-Cu1-S3	97.30(4)		
	S1-C1 S2 C6	1.710(3) 1.672(4)	S5 Cu1 S2	$\frac{97.30(4)}{106.12(4)}$		
	55-00	1.0/3(4)	53-Cu1-55	100.15(4)		
	85-09	1.6/4(4)				
	OI-CI	1.252(4)				
	N1-C6	1.297(5)				
	N2-C9	1.308(5)				
3	Cu1-P2	2.2870(11)	P2 Cu1 P1	124.13(4)		
	Cu1-P1	2 2895(10)	P2-Cu1-S1	115 36(4)		
	Cu1-S1	2.3506(11)	P1-Cu1-S1	108.04(4)		
	Cu1-S2	2.3000(11) 2.3023(11)	$P_2 C_{11} S_2$	101.07(4)		
	Cu1-52	2.3923(11)	12-Cu1-52	101.97(4) 100.27(4)		
	S1-C1	1.733(4)	PI-CuI-52	100.57(4) 102.25(4)		
	52-06	1.084(4)	\$1-Cu1-52	105.55(4)		
	OI-CI	1.221(5)				
	N1-C6	1.349(5)				
	N2-C6	1.342(5)				
4	Cu1-P1	2.2738(13)	P1-Cu1-P2	120.95(5)		
	Cu1-P2	2.2910(15)	P1-Cu1-S2	99.85(5)		
	Cu1-S2	2.3245(13)	P2-Cu1-S2	105.57(5)		
	Cu1-S1	2.3564(14)	P1-Cu1-S1	111.05(5)		
	S2-C6	1 688(5)	P2-Cu1-S1	100 12(5)		
	S1-C1	1.673(5)	\$2-Cu1-\$1	120.55(5)		
	01 C1	1.075(3) 1.280(7)	52 Cui 51	120.55(5)		
	O1-C1	1.200(7)				
_	02-06	1.2/4(0)		101 15(10)		
5	Cul-Pl	2.268(3)	PI-CuI-P2	121.15(10)		
	Cu1-P2	2.291(2)	PI-CuI-SI	100.32(11)		
	Cu1-S1	2.324(2)	P2-Cu1-S1	105.66(8)		
	Cu1-S2	2.343(3)	P1-Cu1-S2	110.74(10)		
	S2-C6	1.670(11)	P2-Cu1-S2	100.23(11)		
	S1-C1	1.662(9)	S1-Cu1-S2	119.95(11)		
	01-C1	1 259(12)				
	02-06	1.312(11)				
6	$Cu^2 - Cu^1$	2.7180(18)	P1-Cu1-S1	117.28(7)		
0	Cu2-Cu1	2.7100(10)	D1 Cy1 S2	117.20(7) 111.65(9)		
	Cul-Pl	2.230(2)	PI-CuI-52	111.03(8) 107.4((7))		
	Cul-SI	2.249(2)	SI-CuI-S2	107.46(7)		
	Cu1-S2	2.4425(19)	PI-CuI-S3	115.45(8)		
	Cu1-S3	2.451(3)	S1-Cu1-S3	99.92(9)		
	Cu2-O1	2.129(3)	S2-Cu1-S3	103.62(8)		
	Cu2-P2	2.242(2)	O1-Cu2-P2	108.87(11)		
	Cu2-S2	2.315(3)	O1-Cu2-S2	101.89(12)		
	Cu2-S3	2.431(2)	P2-Cu2-S2	127.71(7)		
	S3-C15	1 695(5)	01-Cu2-S3	96 50(11)		
	S2-C8	1 732(5)	P2_Cu2_83	109 00(9)		
	S1-C1	1 702(5)	S2-Cu2-S3	108 24(8)		
	51 01	1.104(2)	54 Cu2 55	100.47(0)		

 Table S2 Selected bond lengths and bond angles

	O2-C8	1.242(5)		
	Ol-Cl	1.254(5)		
	NI-C15	1.324(6)		
	N2-C15	1.348(5)		
7	Cu1-S2	2.265(2)	S2-Cu1-S1	121.76(7)
	Cu1-S1	2.2898(19)	S2-Cu1-S3	113.70(7)
	Cu1-S3	2.292(2)	S1-Cu1-S3	124.52(7)
	Cu1-Cu2	2.5988(14)	S2-Cu1-Cu2	163.13(6)
	Cul-Cul'	2.987(2)	S1-Cu1-Cu2	57.67(5)
	Cu2-S5	2.254(2)	S3 Cu1-Cu2	69.85(6)
	Cu2-S2	2.267(2)	S2-Cu1-Cu1	87.17(6)
	Cu2-S1	2.3733(19)	S1-Cu1-Cu1	90.98(6)
	S2-Cu2'	2.267(2)	S3-Cu1-Cu1	93.03(6)
	S1-C1	1.764(6)	Cu2-Cu1-Cu1	76.07(5)
	S2-C8	1.776(6)	S5-Cu2-S2	134.05(8)
	S3-C15	1.669(7)	S5-Cu2-S1	111.47(7)
	S5-C18	1.669(7)	S2-Cu2-S1	104.17(7)
	N1-C15	1.310(8)	S5-Cu2-Cu1	126.77(7)
	N2-C18	1.297(8)	S2-Cu2-Cu1	97.29(6)
			S1-Cu2-Cu1	54.62(5)
8	Ag1-P1	2.5711(11)	P2-Ag1-S1	119.49(4)
	Ag1-P2	2.4963(9)	P2-Ag1-P1	124.86(3)
	Ag1-S1	2.5363(12)	S1-Ag1-P1	98.07(4)
	Ag1-S2	2.6959(12)	P2-Ag1-S2	109.70(4)
	Ag2-P3	2.4693(11)	S1-Ag1-S2	111.74(4)
	Ag2-P4	2.4738(11)	P1-Ag1-S2	88.88(4)
	Ag2-S4	2.4812(13)	P3-Ag2-P4	123.61(4)
	S1-C1	1.712(5)	P3-Ag2-S4	120.70(4)
	S2-C8	1.654(5)	P4-Ag2-S4	115.68(4)
	S4-C47	1.705(6)	e	
	01-C1	1.236(5)		
	O2-C47	1.251(6)		
	N1-C8	1.307(6)		
9	Ag1-P1	2.486(3)	P1-Ag1-P2	121.22(11)
	Ag1-P2	2.497(3)	P1-Ag1-S1	110.81(11)
	Ag1-S1	2.621(3)	P2-Ag1-S1	114 89(12)
	Ag1-S2	2.641(4)	P1-Ag1-S2	103.02(12)
	S1-C1	1 712(13)	P2-Ag1-S2	103.33(12)
	S2-C8	1 644(16)	S1-Ao1-S2	100.01(12)
	01-C1	1 236(15)	51 1151 52	100.01(12)
	N1-C8	1 335(16)		
	N2 C9	1.333(10)		

Complex	D-H…A	H…A (Å)	D-HA (°)	D…A (Å)	Symm. Op.
1	N2-H-O1	1.978	151.56	2.766	
	N1-H-S1	2.700	168.87	3.547	-x, ½+y, 1.5-z
2	N1-H-01	1.930	170.02	2.793	
	N2-H O1	1.950	168.38	2.818	
3	N2-H-O1	1.951	177.66	2.834	$x, \frac{1}{2}-y, \frac{1}{2}+z$
6	N1-H-O2	1.953	170.25	2.697	
	N2-H-S3	2.507	159.91	3.273	2-x, 1-y, 1-z
7	N1-H-01	1.991	155.68	2.740	1-x, -y, 1-z
	N2-H-O2	2.053	149.97	2.765	1-x, -y, 1-z
8	N1-H-01	2.067	153.47	2.796	
9	N1-H-S3	2.517	169.62	3.367	1+x, y, z
	N2-H-S1	2.580	140.73	3.290	
	N3-H-01	1.999	161.56	2.829	
	N4-H-O2	1.880	157.57	2.697	1+x, y, z

 Table S3 Hydrogen bonding parameters

Figure S1 Absorption spectra of 1-6

Figure S2 Absorption spectra of 7-9

Figure S3 Excitation and Emission spectra of 2-7 in solution state

Figure S4 Excitation and Emission spectra of 8 and 9 in solution state

Figure S5 Emission spectrum of 2-5 in solid state

Figure S6 Emission spectrum of 6-9 in solid state