SUPPORTING INFORMATION

Copper catalysed [3+2] cycloaddition with concomitant annulation:

Formation of 2,4-diaryl-1,4-oxazepan-7-ones via ketenimine route

Selvam Kaladevi, Arumugam Thirupathi, Jeyaraman Sridhar, Shanmugam

Muthusubramanian*

Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625 021, India. Email: <u>muthumanian2001@yahoo.com</u>

Table of Content	Page No
Experimental section	2
Analytical Data for compounds 3a-3l	3
Analytical Data for compounds 6a-6l	5
¹ H, ¹³ C NMR & Two Dimensional NMR spectra of compound 3d	9
¹ H & ¹³ C NMR spectra of compound 6a	13
¹ H & ¹³ C NMR spectra of compound 6b	14
¹ H & ¹³ C NMR spectra of compound 6c	15
¹ H, ¹³ C NMR & Two Dimensional NMR spectra of compound 6d	16
¹ H & ¹³ C NMR spectra of compound 6e	20
¹ H & ¹³ C NMR spectra of compound 6f	21
¹ H & ¹³ C NMR spectra of compound $\mathbf{6g}$	22
¹ H & ¹³ C NMR spectra of compound 6h	23
¹ H & ¹³ C NMR spectra of compound 6i	24
¹ H & ¹³ C NMR spectra of compound 6 j	25
¹ H, & ¹³ C NMR spectra of compound 6 k	26
¹ H & ¹³ C NMR spectra of compound 6 I	27

Experimental Section

General

Nuclear Magnetic Resonance (¹H and ¹³C NMR) spectra were recorded on a Bruker 300 MHz NMR spectrometer in CDCl₃ using TMS as internal standard. Chemical shifts are reported in parts per million (δ), coupling constants (*J* values) are reported in Hertz (Hz). ¹³C NMR spectra were routinely run with broadband decoupling. Melting points were determined on a melting point apparatus equipped with a thermometer and were uncorrected. Silica gel-G plates (Merck) were used for TLC analysis with a mixture of petroleum ether (60–80 °) and ethyl acetate as eluent. Elemental analyses were performed on a Perkin Elmer 2400 Series II Elemental CHNS analyzer.

General procedure for the preparation of compound 3: A mixture of reduced monophenacyl aniline (1 mmol) and potassium carbonate (1 mmol) in DMF (3 mL) was stirred well for 10 mins. Then propargyl bromide (2 mmol) was added and stirred for 2 h. After completion of the reaction (TLC), the mixture was poured into ice, extracted with ethyl acetate, concentrated under vacuum and the viscous liquid obtained was subjected for purification through column chromatography using petroleum ether/ethyl acetate mixture (9:1; v/v) as eluent to get the pure product.

General procedure for the preparation of compound 6: A mixture of alkyne 3 (1 mmol) and tosyl azide (1.2 mmol), copper (I) salt (10 mol %) and triethylamine (2 mmol) in dichloromethane (10 mL) at room temperature was vigorously stirred for 15-30 mins. After completion of the reaction (monitored by TLC), the mixture was washed with water (2 x 20 mL) and dried over sodium sulphate and concentrated under vacuum. Then the crude residue was subjected for purification through column chromatography using petroleum ether/ ethyl acetate mixture (9:1; v/v) as eluent to get the pure product.

Analytical Data

1-Phenyl-2-(phenyl(prop-2-ynyl)amino)ethanol (3a)

Isolated as viscous liquid ; ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 2.25 (t, 1H, J = 2.4 Hz, CH), 2.69 (s, 1H, OH), 3.44 (dd, 1H, J = 15.0, 9.3 Hz, CH₂), 3.65 (dd, 1H, J = 15.0, 3.6 Hz, CH₂), 4.00 - 4.16 (m, 2H, CH₂), 5.01 - 5.03 (m, 1H, CH), 6.87 (t, 1H, J = 7.5 Hz, Ar-H), 6.98 (d, 2H, J = 8.1 Hz, Ar-H), 7.27 - 7.35 (m, 2H, Ar-H), 7.37 - 7.47 (m, 5H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 40.7, 59.5, 71.3, 72.2, 79.7, 114.2, 118.4, 125.6, 127.5, 128.2, 128.9, 141.5, 147.9. Anal. Calcd for C₁₇H₁₇NO: C, 81.24; H, 6.82; N, 5.57. Found C, 81.17; H, 6.74; N, 5.49%.

1-Phenyl-2-(prop-2-ynyl(p-tolyl)amino)ethanol (3b)

Isolated as viscous liquid ; ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 2.23 (t, 1H, J = 2.4 Hz, CH); 2.28 (s, 3H, CH₃), 2.82 (s, 1H, OH), 3.34 (dd, 1H, J = 14.7, 9.6 Hz, CH₂), 3.59 (dd, 1H, J = 14.7, 3.3 Hz, CH₂), 3.96 - 4.09 (m, 2H, CH₂), 4.95 (dd, 1H, J = 9.6, 3.3 Hz, CH₂), 6.91 (d, 2H, J = 8.7 Hz, Ar-H), 7.10 (d, 2H, J = 8.1 Hz, Ar-H), 7.29 - 7.45 (m, 5H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 20.3, 41.5, 60.2, 71.3, 72.5, 79.7, 115.6, 125.8, 127.6, 128.4, 128.6, 129.7, 141.6, 146.1. Anal. Calcd for C₁₈H₁₉NO: C, 81.47; H, 7.22; N, 5.28. Found C, 81.59; H, 7.11; N, 5.19%.

2-((4-Methoxyphenyl)(prop-2-ynyl)amino)-1-phenylethanol (3c)

Isolated as viscous liquid ; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.26-2.27 (m, 1H, CH); 3.16 (s, 1H, OH), 3.23 (dd, 1H, J = 14.1, 9.9 Hz, CH₂), 3.57 (dd, 1H, J = 14.1, 3.3 Hz, CH₂), 3.80 (s, 3H, OCH₃), 4.01 (m, 2H, CH₂), 4.89 (dd, 1H, J = 9.6, 2.7 Hz, CH₂), 6.89 (d, 2H, J = 8.1 Hz, Ar-H), 7.04 (d, 2H, J = 8.1 Hz, Ar-H), 7.28 - 7.46 (m, 5H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 41.9, 55.2, 60.3, 70.6, 72.4, 79.4, 114.2, 117.7, 125.6, 127.2, 128.0, 141.8, 142.5, 153.2 Anal. Calcd for C₁₈H₁₉NO₂: C, 76.84; H, 6.81; N, 4.98. Found C, 76.72; H, 6.72; N, 4.93%.

2-((4-Fluorophenyl)(prop-2-ynyl)amino)-1-phenylethanol (3d)

Isolated as viscous liquid ; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.23 (t, 1H, J = 2.4 Hz, CH), 2.90 (s, 1H, OH), 3.36 (dd, 1H, J = 14.4, 9.3 Hz, CH₂), 3.53 (dd, 1H, J = 3.6, 14.4 Hz, CH₂), 3.90 - 4.03 (m, 2H, CH₂), 4.87 - 4.90 (m, 1H, CH₂), 6.88 - 6.99 (m, 4H, Ar-H), 7.27 - 7.41 (m, 5H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 42.0, 60.46, 71.3, 72.9, 79.3, 115.6, 117.3, 125.8, 127.9, 128.5, 141.4, 145.1, 157.0. Anal. Calcd for C₁₇H₁₆FNO: C, 75.82; H, 5.99; N, 5.20; Found C, 75.75; H, 6.08; N, 5.13%.

2-((4-Bromophenyl)(prop-2-ynyl)amino)-1-phenylethanol (3e)

Isolated as viscous liquid ; ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 2.70 (t, 1H, *J* = 2.1 Hz, CH); 2.82 (s, 1H, OH), 3.47 (dd, 1H, *J* = 15.0, 8.7 Hz, CH₂), 3.60 (dd, 1H, *J* = 15.0, 3.9 Hz, CH₂), 3.96 - 4.06 (m, 2H, CH₂), 4.97 - 5.01 (m, 1H, CH₂), 6.83 (d, 2H, *J* = 9.0 Hz, Ar-H), 7.34 - 7.46 (m, 7H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 40.5, 59.3, 71.3, 72.2, 79.2, 115.2, 125.6, 127.4, 128.1*, 131.4, 141.8, 146.9. Anal. Calcd for C₁₇H₁₆BrNO: C, 61.83; H, 4.88, N, 4.24;. Found C, 61.874; H, 4.81; N, 4.20%.

1-(4-Chlorophenyl)-2-((4-chlorophenyl)(prop-2-ynyl)amino)ethanol (3f)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 2.08 (t, 1H, J = 2.4 Hz, CH); 2.62 (s, 1H, OH), 3.20 (dd, 1H, J = 14.7, 9.0 Hz, CH₂), 3.38 (dd, 1H, J = 15.0, 3.6 Hz, CH₂), 3.77 - 3.92 (m, 2H, CH₂), 4.75 - 4.80 (m, 1H, CH₂), 6.68 (d, 2H, J = 9.3 Hz, Ar-H), 7.03 - 7.08 (m, 2H, Ar-H), 7.12 - 7.18 (m, 4H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 41.3, 59.9, 70.9, 72.8, 79.2, 115.8, 123.9, 127.2, 128.6, 129.0, 133.5, 140.0, 146.7 Anal. Calcd for C₁₇H₁₅Cl₂NO: C, 63.76; H, 4.72; N, 4.37. Found C, 63.60; H, 4.66; N, 4.28%.

2-(Phenyl(prop-2-ynyl)amino)-1-p-tolylethanol (3g)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.19 (m, 1H, CH); 2.32 (s, 3H, CH₃), 2.82 (s, 1H, OH), 3.38 (dd, 1H, J = 14.7, 9.3 Hz, CH₂), 3.57 (dd, 1H, J = 15.0, 9.3 Hz, CH₂), 3.99 - 4.13 (m, 2H, CH₂), 4.92 (dd, 1H, J = 9.3, 3.3 Hz, CH₂), 6.82 (t, 1H, J = 7.5 Hz, Ar-H), 6.93 (d, 2H, J = 8.4 Hz, Ar-H), 7.14 - 7.30 (m, 6H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 21.0, 41.0, 59.9, 71.4, 72.3, 79.7, 114.4, 118.6, 125.7, 126.7, 129.1, 137.3, 138.6, 148.1. Anal. Calcd for C₁₈H₁₉NO: C, 81.47; H, 7.22; N, 5.28. Found C, 81.42; H, 7.32; N, 5.12%.

2-((4-Chlorophenyl)(prop-2-ynyl)amino)-1-p-tolylethanol (3h)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 2.26 (t, 1H, J = 2.4 Hz, CH); 2.38 (s, 3H, CH₃), 2.52 (s, 1H, OH), 3.44 (dd, 1H, J = 15.0, 9.00 Hz, CH₂), 3.58 (dd, 1H, J = 14.7, 3.6 Hz, CH₂), 3.97 - 4.12 (m, 2H, CH₂), 4.96 (dd, 1H, J = 9.0, 3.6 Hz, CH₂), 6.88 (d, 2H, J = 8.7 Hz, Ar-H), 7.20 - 7.27 (m, 4H, Ar-H), 7.33 (d, 2H, J = 8.1 Hz, Ar-H). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 20.9, 40.7, 59.5, 71.3, 72.4, 79.3, 115.1, 122.9, 125.6, 128.7, 128.9, 137.2, 138.5, 146.6. Anal. Calcd for C₁₈H₁₈ClNO: C, 72.11; H, 6.05; N, 4.67. Found C, 71.94; H, 6.13; N, 4.60%.

1-(Biphenyl-4-yl)-2-(phenyl(prop-2-ynyl)amino)ethanol (3i)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.18 (m, 1H, CH), 2.80 (s, 1H, OH), 3.31 (dd, 1H, J = 14.7, 9.9 Hz, CH₂), 3.58 (dd, 1H, J = 14.4, 2.7 Hz, CH₂), 4.0 (m, 2H, CH₂), 4.93-4.96 (m, 1H, CH₂), 6.87 (d, 1H, J = 8.1 Hz, Ar-H), 7.06 (d, 2H, J = 8.4 Hz, Ar-

H), 7.29 (d, 2H, J = 6.9 Hz, Ar-H), 7.35 - 7.46 (m, 4H, Ar-H), 7.50 - 7.56 (m, 5H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_C : 41.8, 60.3, 71.1, 72.7, 79.7, 115.9, 125.9, 126.3, 127.0, 127.2*, 128.7*, 129.0, 140.6, 140.7, 146.2. Anal. Calcd for C₂₃H₂₁NO C, 84.37; H, 6.46; N, 4.28. Found C, 84.23; H, 6.55; N, 4.16%. (* Two carbons merged together)

1-(Biphenyl-4-yl)-2-(prop-2-ynyl(p-tolyl)amino)ethanol (3j)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.25 (m, 1H, CH); 2.29 (s, 3H, CH₃), 3.38 (dd, 1H, J = 14.7, 9.6 Hz, CH₂), 3.65 (dd, 1H, J = 14.4, 3.3 Hz, CH₂), 3.98-4.07 (m, 2H, CH₂), 5.01 (dd, 1H, J = 9.6, 3.0 Hz, CH₂), 6.94 (d, 2H, J = 8.4 Hz, Ar-H), 7.12 (d, 2H, J = 8.4 Hz, Ar-H), 7.36 (d, 2H, J = 7.5 Hz, Ar-H), 7.42 - 7.50 (m, 3H, Ar-H), 7.51 (d, 2H, J = 8.4 Hz, Ar-H), 7.57 - 7.63 (m, 3H, Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 20.3, 41.7, 60.2, 71.1, 72.6, 79.7, 115.7, 126.3, 127.0, 127.1, 127.2*, 128.7, 128.9, 129.7, 140.6, 140.7, 146.1. Anal. Calcd for C₂₄H₂₃NO: C, 84.42; H, 6.79; N, 4.10. Found C, 84.25; H, 6.71; N, 4.03%.

2-((4-Chlorophenyl)(prop-2-ynyl)amino)-1-(naphthalen-2-yl)ethanol (3k)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.24-2.25 (m, 1H, CH), 3.51 (dd, 1H, J = 15.0, 9.0 Hz, CH₂), 3.67 (dd, 1H, J = 14.7, 3.6 Hz, CH₂), 4.02-4.10 (m, 2H, CH₂), 5.13-5.16 (m, 1H, CH₂), 6.90 (d, 2H, J = 8.4 Hz, Ar-H), 7.48-7.57 (m, 3H, Ar-H), 7.80 - 7.88 (m, 5H, Ar-H), 7.98 (s, 1H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 41.1, 59.8, 71.7, 72.4, 79.3, 115.4, 123.3, 123.8, 124.7, 125.8, 126.1, 127.6, 127.8, 128.2, 128.9, 132.9, 133.1, 139.2, 147.7. Anal. Calcd for C₂₁H₁₈CINO: C, 75.11; H, 5.40; N, 4.17. Found C, 75.26; H, 5.23; N, 4.04%.

1-(4-Nitrophenyl)-2-(phenyl(prop-2-ynyl)amino)ethanol (31)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 2.23 (s, 1H, CH), 3.19 (s, 1H, OH), 3.28-2.36 (m, 1H, CH₂), 3.58-3.63 (m, 1H, CH₂), 3.94-4.09 (m, 2H, CH₂), 4.93-5.06 (m, 1H, CH₂), 6.84 - 6.92 (m, 2H, Ar-H), 7.22 - 7.24 (m, 2H, Ar-H), 7.46 -7.58 (m, 3H, Ar-H), 8.15 (t, 2H, *J* = 8.1 Hz, Ar-H). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 41.3, 59.6, 70.6, 72.6, 79.4, 114.8, 119.1, 123.4, 126.0, 129.1, 147.2, 147.9, 153.5. Anal. Calcd for C₁₇H₁₆N₂O₃: C, 68.91; H, 5.44; N, 9.45. Found C, 68.75; H, 5.36; N, 9.30%.

2,4-Diphenyl-1,4-oxazepan-7-one (6a)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.92 (dd, 1H, J = 14.7, 5.7 Hz, CH₂), 3.20 (t, 1H, J = 14.1 Hz, CH₂), 3.47 (dd, 1H, J = 14.7, 5.4 Hz, CH₂), 3.57 (dd, 1H, J = 15.3, 8.4 Hz, CH₂), 3.97 (d, 2H, J = 15.0 Hz, CH₂), 5.54 (d, 1H, J = 8.1 Hz, CH), 6.90 (t, 2H, J = 8.7 Hz, Ar-H), 7.28 - 7.43 (m, 8H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 36.3, 46.4, 60.0, 80.6, 116.3, 125.9*, 128.6, 128.8, 129.7, 137.9, 148.7, 173.0. Anal. Calcd for

C₁₇H₁₇NO₂: C, 76.38; H, 6.41; N, 5.24. Found C, 76.47; H, 6.47; N, 5.12%.* Two carbons merged together.

2-Phenyl-4-*p*-tolyl-1,4-oxazepan-7-one (6b)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.29 (s, 3H, CH₃), 2.90 (dd, 1H, J = 14.7, 6.0 Hz, CH₂), 3.22 (t, 1H, J = 14.4 Hz, CH₂), 3.44 (dd, 1H, J = 14.4, 11.1 Hz, CH₂), 3.54 (dd, 1H, J = 15.3,8.4 Hz, CH₂), 3.91 (d, 2H, J = 14.7 Hz, CH), 5.55 (d, 1H, J = 8.4 Hz, CH), 6.81 (d, 2H, J = 8.7 Hz, Ar-H), 7.12 (d, 2H, J = 8.7 Hz, Ar-H), 7.35 - 7.43 (m, 5H, Ar-H).¹³C NMR (75 MHz, CDCl₃) δ_{C} : 20.4, 36.1, 46.8, 60.3, 80.6, 116.7, 125.9, 128.6, 128.8, 129.8, 130.2, 138.0, 146.4, 173.4. Anal. Calcd for C₁₈H₁₉NO₂: C, 76.84; H, 6.81; N, 4.98. Found C, 76.90; H, 6.92; N, 5.05 %.

4-(4-Methoxyphenyl)-2-phenyl-1,4-oxazepan-7-one (6c)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.73 (dd, 1H, J = 14.1, 6.3 Hz, CH₂), 3.01-3.10 (m, 1H, CH₂), 3.14-3.20 (m, 1H, CH₂), 3.30 (dd, 1H, J = 15.0, 8.4 Hz, CH₂), 3.50-3.60 (m, 5H, CH₂), 5.40 (d, 1H, J = 8.4 Hz, CH), 6.70 (s, 4H, Ar-H), 7.16 - 7.28 (m, 5H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 36.5, 48.2, 55.6, 61.6, 80.8, 114.8, 119.6, 125.9, 128.5, 128.8, 138.0, 143.6, 154.3, 173.4. Anal. Calcd for C₁₈H₁₉NO₃: C ,72.71; H, 6.44; N, 4.71. Found C, 72.61; H, 6.38; N, 4.78%.

4-(4-Fluorophenyl)-2-phenyl-1,4-oxazepan-7-one (6d)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.82 (dd, 1H, J = 14.7, 6.3 Hz, CH₂), 3.06-3.18 (m, 1H, CH₂), 3.25-3.33 (m 1H, CH₂), 3.40 (dd, 1H, J = 15.3,8.7 Hz, CH₂), 3.69 (d, 2H, J = 14.7 Hz, CH₂), 5.44 (d, 1H, J = 8.4 Hz, CH), 6.73 - 6.77 (m, 2H, Ar-H), 6.87-6.93 (m, 2H, Ar-H), 7.31 - 7.36 (m, 5H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 36.2, 47.5, 60.9, 80.5, 116.0, 118.6, 125.8, 128.4, 128.5, 137.8, 145.8, 157.3, 173.0. Anal. Calcd for C₁₇H₁₆FNO₂: C, 71.56; H, 5.65; N, 4.91. Found C, 71.47; H, 5.75; N, 4.83%.

4-(4-Bromophenyl)-2-phenyl-1,4-oxazepan-7-one (6e)

Isolated as colorless solid; m.p. 124 °C. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.80 (dd, 1H, J = 15.0, 5.7 Hz, CH₂), 3.05 (dd, 1H, J = 13.8 Hz, CH₂), 3.31 - 3.49 (m, 2H, CH₂), 3.77 - 3.82 (m, 2H, CH₂), 5.39 (d, 1H, J = 8.1 Hz, CH), 6.64 (d, 2H, J = 8.1 Hz, Ar-H), 7.29 - 7.32 (m, 7H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 35.84, 45.9, 59.5, 80.2, 112.0, 117.6, 125.7, 128.7, 128.8, 132.4, 137.5, 147.4, 172.8. Anal. Calcd for C₁₇H₁₆BrNO₂: C, 58.97; H, 4.66; N, 4.05. Found C, 59.02; H, 4.59; N, 4.11%.

2,4-Bis(4-chlorophenyl)-1,4-oxazepan-7-one (6f)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.85 (dd, 1H, J = 14.7, 5.7 Hz, CH₂), 3.10 (t, 1H, J = 15.0 Hz, CH₂), 3.25 - 3.48 (m, 2H, CH₂), 3.75 - 3.85 (m, 2H, CH₂), 5.41 (d, 1H, J = 8.4 Hz, CH), 6.71 (d, 2H, J = 9.0 Hz, Ar-H), 7.18 (d, 2H, J = 8.7 Hz, Ar-H), 7.26 - 7.33 (m, 4H, Ar-H).¹³C NMR (75 MHz, CDCl₃) δ_{C} : 35.8, 46.2, 59.7, 79.6, 117.4, 125.0, 127.1, 129.0, 129.5, 134.4, 136.0, 147.0, 172.7. Anal. Calcd for C₁₇H₁₅Cl₂NO₂: C, 60.73; H, 4.50; N, 4.17. Found C, 60.66; H, 4.58; N, 4.11%.

4-Phenyl-2-*p*-tolyl-1,4-oxazepan-7-one (6g)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.34 (s, 3H, CH₃), 2.77 (dd, 1H, J = 14.4, 5.1 Hz, CH₂), 3.14 (t, 1H, J = 14.8 Hz, CH₂), 3.38 - 3.47 (m, 1H, CH₂), 3.53 (dd, 1H, J = 15.3, 8.4 Hz, CH₂), 3.92 (d, 2H, J = 14.7 Hz, CH₂), 5.48 (d, 1H, J = 8.4 Hz, CH), 6.84 - 6.90 (m, 2H, Ar-H), 7.17 - 7.22 (m, 3H, Ar-H), 7.29 - 7.32 (m, 4H, Ar-H).¹³C NMR (75 MHz, CDCl₃) δ_{C} : 21.3, 36.1, 46.1, 59.7, 80.4, 116.1, 119.9, 125.7, 129.1, 129.4, 129.6, 134.9, 138.4, 173.3. Anal. Calcd for C₁₈H₁₉NO₂: C, 76.84; H, 6.81; N, 4.98. Found C, 76.90; H, 6.73; N, 4.86%.

4-(4-Chlorophenyl)-2-(4-methylphenyl)-1,4-oxazepan-7-one (6h)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.36 (s, 3H, CH₃), 2.91 (dd, 1H, *J* = 15.0, 6.0 Hz, CH₂), 3.11 - 3.21 (m, 1H, CH₂), 3.41-3.49 (m, 2H, CH₂), 3.85 - 3.93 (m, 2H, CH₂), 5.47 (d, 1H, *J* = 8.4 Hz, CH), 6.78 (d, 2H, *J* = 9.3 Hz, Ar-H), 7.22 - 7.31 (m, 6H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 21.2, 36.0, 46.3, 59.8, 80.4, 117.5, 124.9, 125.8, 129.3, 129.6, 134.7, 138.6, 147.2, 173.1 . Anal. Calcd for C₁₈H₁₈ClNO₂: C, 68.46; H, 5.75; N, 4.44.Found C, 68.57; H, 5.66; N, 4.49%.

2-(Biphenyl-4-yl)-4-phenyl-1,4-oxazepan-7-one (6i)

Isolated as viscous liquid;¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.86 (dd, 1H, J = 14.7, 5.7 Hz, CH₂), 3.17 (t, 1H, J = 14.6 Hz, CH₂), 3.40 (dd, 1H, J = 14.4, 11.1 Hz, CH₂), 3.53 (dd, 1H, J = 15.3, 8.4 Hz, CH₂), 3.85 - 3.94 (m, 2H, CH₂), 5.55 (d, 1H, J = 8.4 Hz, CH), 6.79 (d, 2H, J = 8.7 Hz, Ar-H), 7.11 (d, 2H, J = 8.4 Hz, Ar-H), 7.31 - 7.36 (m, 1H, Ar-H), 7.40 - 7.48 (m, 5H, Ar-H), 7.54 - 7.61 (m, 4H, Ar-H).¹³C NMR (75 MHz, CDCl₃) δ_{C} : 36.0, 46.6, 60.1, 80.2, 116.6, 126.2, 127.0, 127.4, 127.5, 128.7, 129.6, 130.1, 136.8, 140.3, 141.4, 146.3, 173.2. Anal. Calcd for C₂₃H₂₁NO₂: C, 80.44; H, 6.16; N, 4.08. Found C, 80.34; H, 6.09; N, 4.19%.

2-(Biphenyl-4-yl)-4-*p*-tolyl-1,4-oxazepan-7-one (6j)

Isolated as colourless liquid; m.p. 105 °C. ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.29 (s, 3H, CH₃), 2.91 (dd, 1H, J = 14.4, 5.4 Hz, CH₂), 3.22 (t, 1H, J = 14.4 Hz, CH₂), 3.40-3.49 (m, 1H, CH₂), 3.57 (dd, 1H, J = 15.3, 8.4 Hz, CH₂), 3.96 (d, 2H, J = 15.0 Hz, CH₂), 5.59 (d, 1H, J = 8.1 Hz,

CH), 6.82 (d, 2H, J = 8.1 Hz, Ar-H), 7.12 (d, 2H, J = 8.1 Hz, Ar-H), 7.38 (d, 2H, J = 7.2 Hz, Ar-H), 7.44 (d, 2H, J = 7.5 Hz, Ar-H), 7.50 (d, 2H, J = 8.4 Hz, Ar-H), 7.58 - 7.64 (m, 3H, Ar-H).¹³C NMR (75 MHz, CDCl₃) δ_{C} : 20.3, 36.1, 46.8, 60.3, 80.4, 116.7, 126.3, 127.1, 127.5*, 128.8, 129.8, 130.2, 136.9, 140.4, 141.5, 146.4, 173.4. Anal. Calcd for C₂₄H₂₃NO₂: C, 80.64; H, 6.49; N, 3.92. Found C, 80.73; H, 6.60; N, 4.08%. (*Two carbons merged together)

4-(4-Chlorophenyl)-2-(naphthalen-2-yl)-1,4-oxazepan-7-one (6k)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.98 (dd, 1H, *J* = 15.3, 6.3 Hz, CH₂), 3.25 (t, 1H, *J* = 12.6 Hz, CH₂), 3.51 (t, 1H, *J* = 12.6 Hz, CH₂), 3.64 (dd, 1H, *J* = 15.0, 7.5 Hz, CH₂), 3.97 - 4.02 (m, 2H, CH₂), 5.69 (d, 1H, *J* = 8.1 Hz, CH), 6.84 (d, 2H, *J* = 8.4 Hz, Ar-H), 7.48 - 7.55 (m, 4H, Ar-H), 7.87 - 7.96 (m, 5H, Ar-H). ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 36.0, 46.4, 60.0, 80.5, 117.5, 123.3, 125.0, 125.1, 126.5, 126.6, 127.7, 128.1, 128.9, 129.6, 133.1, 133.2, 134.8, 147.2, 173.0. Anal. Calcd for C₂₁H₁₈ClNO₂: C, 71.69; H, 5.16; N, 3.98. Found C, 71.80; H, 5.05; N, 3.85%.

2-(4-Nitrophenyl)-4-phenyl-1,4-oxazepan-7-one (6l)

Isolated as viscous liquid; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.90 (dd, 1H, J = 14.7, 5.4 Hz, CH₂), 3.17-3.26 (m, 1H, CH₂), 3.39-3.48 (m, 1H, CH₂), 3.53 (dd, 1H, J = 15.3, 8.4 Hz, CH₂), 3.89 - 3.96 (m, 2H, CH₂), 5.55 (d, 1H, J = 8.4 Hz, CH), 6.81 (d, 2H, J = 8.4 Hz, Ar-H), 7.13 (d, 2H, J = 8.4 Hz, Ar-H), 7.33 - 7.45 (m, 5H, Ar-H).¹³C NMR (75 MHz, CDCl₃) δ_{C} : 36.1, 46.8, 60.3, 80.5, 116.6, 125.8, 128.5, 128.8, 129.7, 130.2, 137.9, 146.4, 173.3. Anal. Calcd for C₁₇H₁₆N₂O₄: C, 65.38; H, 5.16; N, 8.97. Found C, 65.50; H, 5.09; N, 8.88%.

Spectral copies

