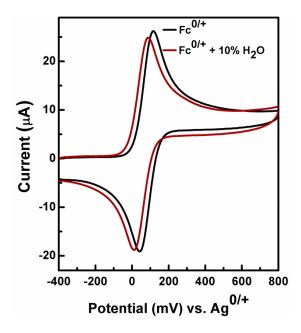
Supporting Information

A systematic study of the variation of tetrathiafulvalene (TTF), TTF⁺⁺ and TTF²⁺ reaction pathways with water in the presence and absence of light

Shaimaa M. Adeel,^[a] Qi Li,^[a] Ayman Nafady,^[a,b] Chuan Zhao,^[a,c] Amal I. Siriwardana,^[a,d] Alan M. Bond^{*[a]} and Lisandra L Martin^{*[a]}

^[a] School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

* To whom correspondence should be addressed, Email: <u>Lisa.Martin@monash.edu</u>, <u>Alan.Bond@monash.edu</u>


^[b] *Current Address:* King Saud University, College of Science, Department of Chemistry, PO Box 2455, Riyadh 11451, Saudi Arabia

^[c] *Current Address:* School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia

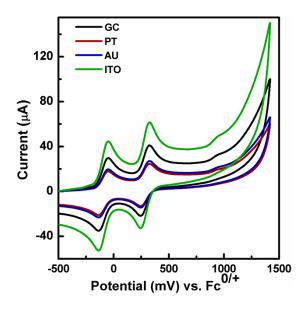
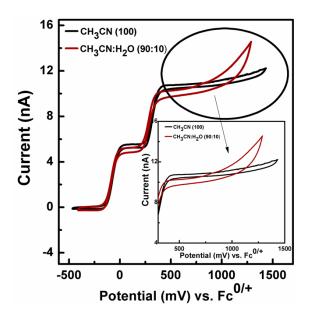

^[d] *Current Address:* Tecnalia, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua, 2, E-20009 Donostia-San Sebastián, Gipuzkoa, Spain

Table S1 Cyclic voltammetric parameters (vs. Fc/Fc^+) obtained for the oxidation of 1 mM TTF with a 3 mm diameter GC electrode using a scan rate of 100 mV s⁻¹ in acetonitrile (0.1 M Bu₄NPF₆) in the absence and presence of 10 % water.


		TTF**/2*						
Water% (v/v)	E_{p}^{ox1} mV	E ^{red1} mV	Е _{m1} mV	ΔE_{p1} mV	E_{p}^{ox2} mV	E ^{red2} p mV	Е _{m2} mV	ΔE_{p2} mV
0	-34	-114	-74	80	350	272	311	78
10	-50	-137	-94	87	325	245	285	80

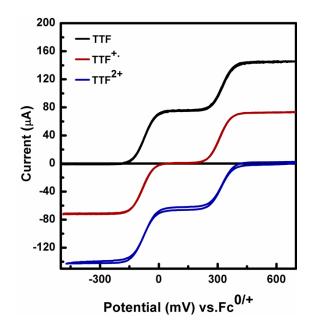

Figure S1 Cyclic voltammograms for the oxidation of 1 mM Ferrocene (Fc) in acetonitrile (0.1 M Bu_4NPF_6) obtained with a 3 mm diameter GC electrode using a scan rate of 100 mV s⁻¹ in the absence and presence of 10% water.

Figure S2 Cyclic voltammograms for the oxidation of 1mM TTF in acetonitrile/water (90:10%) (0.1 M Bu_4NPF_6) obtained with GC, Au, Pt and ITO electrodes using a scan rate of 100 mV s⁻¹.

Figure S3 Steady-state voltammograms obtained with a 12 μ m diameter carbon fiber microdisc electrode using a scan rate of 20 mV s⁻¹ for the oxidation of 1 mM TTF in acetonitrile (0.1 M Bu₄NPF₆) in the absence and in the presence of 10% water.

Figure S4 RDE voltammograms obtain with a 3 mm diameter GC electrode using a rotation rate of 1000 rpm and scan rate of 20 mV s⁻¹ for 1 mM TTF, and TTF⁺⁺ and TTF²⁺ generated by bulk electrolysis at 120 and 620 mV vs. $Fc^{0/+}$ respectively in acetonitrile (0.1 M Bu₄NPF₆) inside a dry box. During this bulk electrolysis experiment, the initially pale-yellow TTF solution changed to dark red TTF⁺⁺, which upon further oxidation at 620 mV generates a light-yellow TTF²⁺ solution; thus the oxidation of TTF to TTF²⁺ occurs in two steps. The position of zero current in the steady state RDE voltammogram confirms that complete oxidation of TTF to TTF²⁺ is achieved in the absence of oxygen and water under dry box conditions.

Table S2 Cyclic voltammetric parameters (vs. Fc/Fc⁺) obtained for the oxidation and reduction of 1mM TTF⁺⁺ at a 3 mm diameter GC electrode in acetonitrile and mixed acetonitrile/water (90:10%, v/v) solvent media (0.1 M Bu₄NPF₆) in the dark and after irradiation with white light (λ = 275-750 nm).

		TTF	=0/+•		TTF+•/2+				HTTF⁺
	E^{ox1}_{p}	$E^{red1}_{\ p}$	E_{m1}	ΔE_{p1}	E_{p}^{ox2}	$E^{red2}_{\ \ p}$	<i>E</i> _{<i>m</i>2}	ΔE_{p2}	E_{p}^{ox3}
Water % (v/v)	mV	mV	mV	mV	mV	mV	mV	mV	mV
0	-33	-110	-71	77	350	272	311	78	-
10 (dark)	-57	-134	-95	77	324	246	285	78	-
10 (white light)	-57	-134	-95	77	318	246	282	72	1024

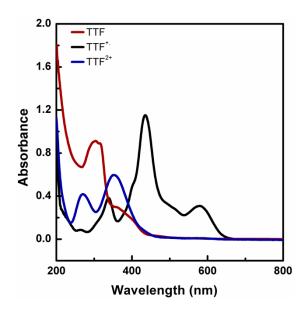
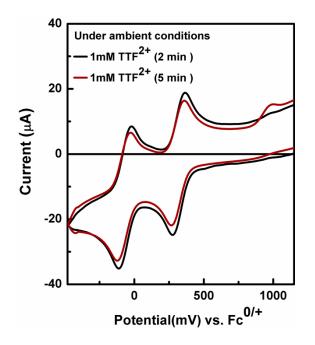
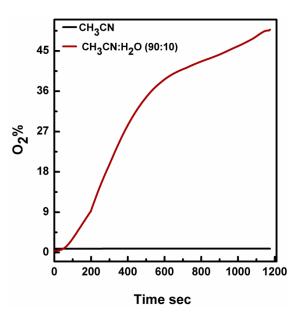




Figure S5 UV-visible spectra of 1 mM TTF, TTF⁺⁺ and TTF²⁺ in acetonitrile (0.1 M Bu₄NPF₆).

Figure S6 Voltammograms obtained at a 3 mm diameter GC electrode at a scan rate of 100 mV s⁻¹ for 1mM TTF²⁺ generated by bulk electrolysis in acetonitrile (0.1 M Bu_4NPF_6) under dry box conditions followed by 2 min and 5 min exposure to ambient conditions (outside dry box).

Figure S7 Oxygen percentages as a function of time for 1 mM TTF²⁺ in acetonitrile (0.1 M Bu_4NPF_6) with or without added water under nitrogen atmosphere with exposure to white light.