Electronic Supplementary Information (ESI)

Dual Colorimetric Sensing of Mercury and Iodide ions by Steroidal

1,2,3-Triazole-Stabilized Silver Nanoparticles

Aradhana Nayal, Anjul Kumar, Rajesh K. Chhatra and Pramod S. Pandey *

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India. Fax: (+91)11-26582037; Tel: (+91)11-26591506.

Email Address: pramod@chemistry.iitd.ac.in

Page <u>Content</u>

S 3	S1. Synthesis of silver nanoparticles stabilized with ligands 1–4
S 3	Fig. S1. UV– visible spectra of (a) ligand 1–4 stabilized AgNPs
S4	Fig. S2. HRTEM images of AgNPs stabilized with (a) ligand 2 (scale bar 5
	nm), (b) ligand 4 (scale bar 50 nm)
S4	Fig. S3. Size distribution of AgNPs stabilized with ligands 1–4
S5	Fig. S4. A photograph of the solutions of AgNPs stabilized with ligand 2 after addition of different metal ions. Ion concentration of Co^{2+} , Cd^{2+} , Zn^{2+} , Cu^{2+} and Pb^{2+} is 1 mM; $[Hg^{2+}] = 375 \ \mu M$.
S5	Fig. S5. A photograph of the solutions of AgNPs stabilized with ligand 4 after addition of different metal ions. Ion concentration of Cd^{2+} , Zn^{2+} , Cu^{2+} and Pb^{2+} is 1mM, $[Hg^{2+}] = 200 \ \mu$ M.
S5	Fig. S6. HRTEM images of ligand-stabilized AgNPs on addition of Hg^{2+} (a) ligand 2.AgNPs and Hg^{2+} (Scale bar 100 nm), (b) ligand 4.AgNPs and Hg^{2+} (Scale bar 50 nm)
S 6	Fig. S7. A photograph of the solutions of AgNPs stabilized with ligand 2 after addition of different anions. Ion concentration of HSO_4^- , $H_2PO_4^-$, OAc^- , Br^- , Cl^- and F^- is 2 mM; $[I^-] = 1$ mM.
\$6	Fig. S8. A photograph of the solutions of AgNPs stabilized with compound 4 after addition of different anions. Ion concentration of F^- , Cl^- , Br^- , OAc^- , $H_2PO_4^-$ and HSO_4^- is 2 mM; $[I^-] = 300 \ \mu M$.
S 6	Fig. S9. HRTEM images of ligand-stabilized 4.AgNPs on addition of I ⁻ (Scale bar 100 nm)
S7	Fig. S10. UV-vis spectara on addition of Hg^{2+} / Γ to ligand-stabilized 1 and 2.AgNPs respectively
S7	Fig. S11. UV-vis spectara on addition of Hg^{2+} / Γ to ligand-stabilized 3 and 4 . AgNPs respectively
S7	Fig. S12. TEM-EDX 3 .AgNPs after addition of Hg^{2+}
S 8	Fig. S13. TEM-EDX 3. AgNPs after addition of I
S 8	Fig. S14. TEM-EDX 4 .AgNPs after addition of Hg^{2+}

- S9 Fig. S15. TEM-EDX 4.AgNPs after addition of Γ
- S9 S2. General procedure for the synthesis of bile acid based receptors
- S12 **Fig. S16.** ¹H NMR spectrum of ligand **2**
- S12 **Fig. S17.** ¹³C NMR spectrum of ligand **2**
- S13 **Fig. S18.** ¹H NMR spectrum of ligand **3**
- S13 **Fig. S19.** ¹³C NMR spectrum of ligand **3**
- S14 **Fig. S20.** ¹H NMR spectrum of ligand **4**
- S14 **Fig. S21.** ¹³C NMR spectrum of ligand **4**

S1. Synthesis of silver nanoparticles stabilized with ligands 1-4

Silver nanoparticles were synthesized using the reported method¹ by reduction of AgNO₃ in sun light in the presence of one of the bile acid-based ligands **1–4**. For this, 1 mL (1000 μ M) solution of a ligand from **1–4** CHCl₃/MeOH (1:1) was added to the solution of 1 mL (100 μ M) AgNO₃ in CHCl₃/MeOH (1:1) and the resulting solution was exposed to sun light for 15-20 min. The solution turned dark yellow, indicating the formation of silver nanoparticles. The UV-vis spectrum showed a band around 420 nm for AgNPs (Fig. S1). The HRTEM indicated the formation of highly uniform and monodispersed silver nanoparticles (Figure S2). The average diameter of these particles was found to be 2–10 nm.

Fig. S1. UV-visible spectra of ligand 1-4 stabilized AgNPs

Fig. S2. HRTEM images of AgNPs stabilized with (a) ligand **2** (scale bar 5 nm), (b) ligand **4** (scale bar 50 nm)

Fig. S3. Size distribution of AgNPs stabilized with ligands 1-4

Fig. S4. A photograph of the solutions of AgNPs stabilized with ligand 2 after addition of different metal ions. Ion concentration of Co²⁺, Cd²⁺, Zn²⁺, Cu²⁺ and Pb²⁺ is 1 mM; $[Hg^{2+}] = 375 \mu M$.

Fig. S5. A photograph of the solutions of AgNPs stabilized with ligand 4 after addition of different metal ions. Ion concentration of Cd^{2+} , Zn^{2+} , Cu^{2+} and Pb^{2+} is $1 \text{mM}; [\text{Hg}^{2+}] = 200 \ \mu\text{M}.$

Fig. S6. HRTEM images of ligand-stabilized AgNPs on addition of Hg^{2+} (a) ligand **2**.AgNPs and Hg^{2+} (Scale bar 100 nm), (b) ligand **4**.AgNPs and Hg^{2+} (Scale bar 50 nm)

Fig. S7. A photograph of the solutions of AgNPs stabilized with ligand 2 after addition of different anions. Ion concentration of HSO_4^- , $H_2PO_4^-$, OAc^- , Br^- , Cl^- and F^- is 2 mM; $[I^-] = 1$ mM.

Fig. S8. A photograph of the solutions of AgNPs stabilized with ligand **4** after addition of different anions. Ion concentration of F^- , Cl^- , Br^- , OAc^- , $H_2PO_4^-$ and HSO_4^- is 2 mM; $[\Gamma] = 300 \ \mu$ M.

Fig. S9. HRTEM images of ligand 4.AgNPs on addition of Γ (Scale bar 100 nm)

Fig. S10. UV-vis spectra on addition of Hg^{2+} / Γ to ligand-stabilized 1 and 2.AgNPs respectively

Fig. S11. UV-vis spectra on addition of Hg^{2+} / Γ to ligand-stabilized **3** and **4**.AgNPs respectively

Fig. S12. TEM-EDX 3.AgNPs after addition of Hg²⁺

Fig. S13. TEM-EDX 3.AgNPs after addition of I

Fig. S14. TEM-EDX 4.AgNPs after addition of Hg^{2+}

Fig. S15. TEM-EDX 4.AgNPs after addition of I

S2. General procedure for the synthesis of bile acid based receptors

To a solution of 3β , 12β -bis-(azidoacetyl)deoxycholate in 30 mL of *t*-BuOH was added propargyl derivative. To this solution, CuSO₄.5H₂O (10 mol %) and sodium ascorbate (20 mol %) were added in 3.0 mL of H₂O. The solutions was stirred at 60 °C for 14 h and evaporated under vacuum. The residue was dissolved in 30 mL of CHCl₃ and washed with H₂O (10 mL) followed by brine (10 mL). The chloroform layer was dried over anhydrous Na₂SO₄ and evaporated completely. The crude product was purified by column chromatography over silica-gel to give the 1,2,3triazole receptors.

Compound 1

Compound **1** was synthesized by reported literature procedure.²

Compound 2

The 3β , 12β -bis-(azidoacetyl)deoxycholate (250 mg, 0.43 mmol) and prop-2ynyloxy-benzene (126 mg, 0.95 mmol) were taken. The product **2** was isolated as 338 mg of white solid. Yield: 94%; mp 90–91 °C; ¹H NMR (300 MHz, CDCl₃, TMS): δ (ppm): 0.71 (s, 3H, 18-Me), 0.81 (d, 3H, J = 4.8 Hz, 21-Me), 0.89 (s, 3H, 19-Me), 1.01-2.39 (26H, steroidal H), 3.67 (s, 3H, -OCH₃), 4.79 (m, 1H, 3β-H), 5.15–5.2 7 (m, 9H, 12β-H, -OCOCH₂ × 2, -OCH₂ × 2), 6.94–7.01 (m, 6H, Ar-H), 7.26–7.33 (m, 4H, Ar-H), 7.82 (s, 1H, Ar-H),7.89 (s, 1H, Ar-H); ¹³C NMR (75 MHz, CDCl₃, TMS): δ (ppm): 11.79, 17.21, 22.31, 22.88, 24.88, 25.39, 25.66, 26.19, 26.82, 30.31, 30.47, 31.17, 33.39, 33.57, 34.17, 34.91, 41.11, 44.59, 46.86, 48.79, 50.84, 51.10, 61.27, 76.21, 77.86, 114.25, 114.29, 120.76, 120.86, 124.19, 124.39, 129.10, 129.18, 143.76, 143.98, 157.80, 157.86, 164.94, 165.57, 174.17; ES-HRMS calcd for C₄₇H₆₀N₆O₈Na 859.4370, found 859.4365, (M + Na)⁺.

Compound 3

The 3β, 12β-bis-(azidoacetyl)deoxycholate (300 mg, 0.52 mmol) and prop-2ynylsulfanyl-benzene (169 mg, 1.14 mmol) were taken. The crude product was purified by column chromatography over silica-gel (40% ethyl acetate in hexane) to give 379 mg of **3**. Yield: 84%; mp: 103–105 °C; IR (KBr): 3072, 2923, 1743, 1452, 1223 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ (ppm): 0.70 (s, 3H, 18–Me), 0.79 (s, 3H, 21–Me), 0.87 (s, 3H, 19–Me), 1.02–2.35 (26H, steroidal H), 3.66 (s, 3H, –OCH₃), 4.21 (s, 2H, –SCH₂), 4.28 (s, 2H, –SCH₂), 4.75 (m, 1H, 3β-H), 5.09–5.16 (m, 5H, 12β-H, –OCOCH₂ × 2), 6.87–7.36 (m, 10H, Ar–H), 7.60 (s, 1H, triazole-H), 7.64 (s, 1H, triazole-H); ¹³C NMR (75 MHz, CDCl₃, TMS): δ (ppm): 11.96, 17.35, 22.45, 22.99, 25.02, 25.46, 25.73, 26.31, 26.93, 28.29, 28.44, 29.37, 30.44, 30.61, 31.32, 33.52, 33.71, 34.27, 35.05, 41.24, 44.69, 47.01, 48.92, 50.94, 51.24, 76.28, 78.03, 123.49, 123.68, 126.08, 128.68, 128.76, 129.02, 135.35, 135.54, 144.71, 144.87, 165.03, 165.61, 174.31; ES-HRMS calcd for C₄₇H₆₃N₆O₆S₂ 869.4089, found 869.4068, (M + H)⁺.

Compound 4

The 3β, 12β-bis-(azidoacetyl)deoxycholate (300 mg, 0.52 mmol) and 2-prop-2ynylsulfanyl-phenylamine (215 mg, 1.14 mmol) were taken. The crude product was purified by column chromatography over silica-gel (70% ethyl acetate in hexane) to give 397 mg of 4. Yield: 85%; mp: 155-157 °C; IR (KBr) 3433, 3329, 2942, 1741, 1612, 1474, 1218 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ (ppm): 0.72 (s, 3H, 18-Me), 0.79 (s, 3H, 21-Me), 0.89 (s, 3H, 19-Me), 1.02-2.36 (26H, steroidal H), 3.68 (s, 3H, -OCH₃), 4.01 (s, 2H, -SCH₂), 4.05 (s, 2H, -SCH₂), 4.31 (bs, 2H, -NH₂), 4.38 (bs, 2H, $-NH_2$), 4.76 (m, 1H, 3 β -H), 5.12–5.20 (m, 5H, 12 β -H, $-OCOCH_2 \times 2$), 6.62-6.70 (m, 4H, Ar-H), 7.08-7.13 (m, 2H, Ar-H), 7.26-7.28 (m, 3H, Ar-H), 7.29 (s, 1H, triazole-H), 7.30 (s, 1H, triazole-H); 13 C NMR (75 MHz, CDCl₃, TMS): δ (ppm): 12.16, 17.57, 22.67, 23.18, 25.28, 25.67, 25.99, 26.51, 27.14, 29.04, 29.30, 29.59, 30.63, 30.86, 31.60, 33.74, 33.97, 34.38, 34.50, 35.27, 41.43, 44.92, 47.31, 49.15, 50.99, 51.06, 51.50, 76.44, 78.30, 114.99, 116.56, 116.64, 118.29, 123.35, 123.57, 130.23, 130.26, 136.24, 136.44, 144.80, 144.93, 148.73, 148.94, 165.32, 165.92, 174.56; ES-HRMS calcd for C₄₇H₆₃N₈O₆S₂ 899.4306, found 899.4319, (M + $H)^+$.

Reference

- 1. A. Kumar, R. K. Chhatra and P. S. Pandey, *Org. Lett.* 2010, **12**, 24.
- 2. A. Kumar and P. S. Pandey, Org. Lett. 2008, 10, 165.

Fig. S17. ¹³C NMR spectrum of ligand 2

Fig. S19. ¹³C NMR spectrum of ligand 3

