SI 1

The palladium(II) complex of *N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine: synthesis, solution and solid state structure and catalytic activity in Suzuki-Miyaura reaction

Ivan Damljanović,^a Dragana Stevanović,^a Anka Pejović,^a Danijela Ilić,^b Marija Živković,^a Jovana Jovanović,^a Mirjana Vukićević,^c Goran A. Bogdanović,^d Niko S. Radulović*^e and Rastko D.

Vukićević*a

^aDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia.

^bFaculty of Technical Sciences Kosovska Mitrovica, University of Priština, Kneza Miloša 7, 38220 Kosovska Mitrovica, Serbia.

^cDepartment of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia.

^dVinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia.

^eDepartment of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.

* Corresponding authors: R.D.V.: e-mail, <u>vuk@kg.ac.rs</u>; tel. (+381) 34-30-02-68; fax, (+381) 34-34-50-40. N.S.R.: e-mail, <u>nikoradulovic@yahoo.com</u>; tel. (+381) 62-80-49-210; fax, (+381) 18-533-014.

Table of Contents

1	¹ H and ¹³ C NMR spectra of compounds 4, 5 and 6	SI 2
2	X-ray crystal structure analyses of 6	SI 14
2.1	Dichlorido-(<i>N</i> , <i>N</i> -diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II)	CT 14
2.2	monosolvate (6 EtOH), polymorph I Dichlorido (N N diethyl 1 ferrocenyl 3 thisbutanamine)nalladium(II) (6)	SI 14
2.2	polymorph II	SI 20

1 ¹H and ¹³C NMR spectra of compounds 4, 5 and 6

¹H NMR (200 MHz, CDCl₃) spectrum of 2-(methylthio)-1-ferrocenylethyl acetate (4)

¹³C NMR (50 MHz, CDCl₃) spectrum of 2-(methylthio)-1-ferrocenylethyl acetate (4)

¹H NMR (400 MHz, CDCl₃) spectrum of *N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine (5)

¹³C NMR (100 MHz, CDCl₃) spectrum of *N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine (5)

¹H NMR (400 MHz, CDCl₃) spectrum of *trans*-dichlorido-(*N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (*trans*-6)

¹H NMR (400 MHz, CDCl₃) spectrum of *cis*-dichlorido-(*N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (*cis*-6)

¹³C NMR (100 MHz, CDCl₃) spectrum of dichlorido-(*N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (6)

DEPT135 spectrum of dichlorido-(N,N-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (6)

¹H-¹H COSY spectrum of dichlorido-(*N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (6)

NOESY spectrum of dichlorido-(N,N-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (6)

HSQC spectrum of dichlorido-(N,N-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (6)

HMBC spectrum of dichlorido-(N,N-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (6)

2 X-ray crystal structure analyses of 6

2.1 Dichlorido-(*N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) monosolvate (6·EtOH), polymorph I

Empirical formula	$C_{19} H_{31} Cl_2 Fe N O Pd S$	
Formula weight	554.66	
Color, crystal shape	Dark red, prismatic	
Crystal size (mm ³)	0.50 x 0.21 x 0.12	
Temperature (K)	293(2)	
Wavelength (Å)	0.71073	
Crystal system	Monoclinic	
Space group	$P2_{l}/n$	
Unit cell dimensions		
<i>a</i> (Å)	11.8670(4)	
<i>b</i> (Å)	14.7863(4)	
<i>c</i> (Å)	13.4527(6)	
β (°)	105.836(5)	
Volume (Å ³)	2270.94(14)	
Ζ	4	
D_{calc} (Mg/m ³)	1.622	
$\mu (\mathrm{mm}^{-1})$	1.766	
F(000)	1128	
θ range for data collection (°)	3.17 - 29.68	
Index ranges	-16<=h<=16, -20<=k<=20, -18<=l<=18	
Reflections collected	33237	
Independent reflections, R_{int}	5858, 0.0413	
Completeness to $\theta = 27.00^{\circ}$	99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5858 / 0 / 238	
Goodness-of-fit on F ²	1.151	
Final R_1/wR_2 indices ($I > 2\sigma_I$)	0.0506, 0.0969	
Final R_1/wR_2 indices (all data)	0.0667, 0.1037	
Largest diff. peak and hole ($e \text{ Å}^{-3}$)	0.759 and -0.402	

 Table S3 Crystallographic data for the crystal structure of 6 EtOH

bon	b o n
Pd1-N1	N1-Pd1-S1
Pd1-S1	N1-Pd1-Cl1
Pd1-Cl1	S1-Pd1-Cl1
Pd1-Cl2	N1-Pd1-Cl2
Fe1–C9	S1-Pd1-Cl2
Fe1–C8	Cl1-Pd1-Cl2
Fe1–C7	C12-S1-C13
Fe1–C2	C12-S1-Pd1
Fe1-C10	C13-S1-Pd1
Fe1–C4	C16-N1-C14
Fe1–C5	C16-N1-C11
Fe1–C6	C14-N1-C11
Fe1–C3	C16-N1-Pd1
Fe1–C1	C14-N1-Pd1
S1-C12	C11-N1-Pd1
S1-C13	C5-C1-C2
N1-C16	C5-C1-C11
N1-C14	C2-C1-C11
N1-C11	C1-C2-C3
C1-C5	C4-C3-C2
C1-C2	C3-C4-C5
C1-C11	C4-C5-C1
C2-C3	C10-C6-C7
C3-C4	C8-C7-C6
C4-C5	C9–C8–C7
C6-C10	C8-C9-C10
C6-C7	C6-C10-C9
C7–C8	C12-C11-C1
C8-C9	C12-C11-N1
C9-C10	C1-C11-N1
C11-C12	C11-C12-S1
C14-C15	C15-C14-N1
C16-C17	C17-C16-N1
O1-C18	C19-C18-O1
C18-C19	

Table S4 Selected bond lengths (Å) and bond angles (°) in the crystal structure of $6 \cdot \text{EtOH}$.

Fig. S1 Crystal structure of 6 EtOH shown in two orthogonal projections.

Fig. S2 Molecules of **6** form a dimer (illustrated in two orthogonal projections) with two Pd1...S1ⁱ intermolecular contacts [symmetry code: (i) -x+1,-y+1,-z+2]. The Pd1...S1ⁱ distance is 3.7633(10) Å.

Fig. S3 Two molecules of **6** within the dimer shown in Figure S2 are additionally interconnected by following weak intermolecular interactions: a) C12–H12b...O1 [C12...O1 = 3.302(6) Å, H12b...O1 = 2.63 Å, C12–H12b...O1 = 126.8 °], b) C11–H11...Cl1 [C11...Cl1 = 3.741(4) Å, H11...Cl1 = 2.87 Å, C11–H11...Cl1 = 148.3 °] and c) O1–H1...Cl2 [O1...Cl2 =3.321(5) Å, H1...Cl2 = 2.53 Å, O1–H1...Cl2 – 154.8 °].

Fig. S4 Molecules of **6** form the dimer with two ferrocene units placed in parallel orientation and direct contact. The formation of the dimer is based on a large stabilizing electrostatic complementarity between two ferrocene units⁹.

2.2 Dichlorido-(*N*,*N*-diethyl-1-ferrocenyl-3-thiabutanamine)palladium(II) (6), polymorph II

Fig. S5 The molecular structure of **6** in polymorph II with the atom numbering scheme (hydrogen atoms are omitted for clarity). Displacement ellipsoids are drawn at 30% probability level. Other projections of the molecule are given in Figure S6.

Fig. S6 Crystal structure of 6 (polymorph II) shown in two orthogonal projections.

Fig. S7 Polymorphs I (a) and II (b) have different orientation of the two ethyl groups bonded to the N1 atom.

 Table S5 Crystallographic data for the crystal structure of 6.

Empirical formula	C ₁₇ H ₂₅ Cl ₂ Fe N Pd S	
Formula weight	508.59	
Color, crystal shape	Dark red, prismatic	
Crystal size (mm ³)	0.24 x 0.15 x 0.13	
Temperature (K)	293(2)	
Wavelength (Å)	0.71073	
Crystal system	Orthorhombic	
Space group	$Pna2_1$	
Unit cell dimensions		
<i>a</i> (Å)	13.6982(5)	
$b(\mathbf{A})$	18.1868(7)	
c(Å)	7.6277(3)	
Volume $(Å^3)$	1900.26(13)	
Z	4	
D_{calc} (Mg/m ³)	1.778	
μ (mm ⁻¹)	2.098	
F(000)	1024	
θ range for data collection (°)	3.17 - 29.16	
Index ranges	−17<=h<=17,	
	−24<=k<=24,	
	-10<=l<=9	
Reflections collected	10081	
Independent reflections, R_{int}	4175, 0.0267	
Completeness to $\theta = 27.00^{\circ}$	99.7 %	
Refinement method	Full-matrix least-squares	
	on F^2	
Data / restraints / parameters	4175 / 0 / 212	
Goodness-of-fit on F^2	1.139	
Final R_1/wR_2 indices $(I > 2\sigma_I)$	0.0571. 0.1423	
Final R_1/wR_2 indices (all data)	0.0634, 0.1465	
Largest diff peak and hole (e $Å^{-3}$)	1.268 and -1.169	
	1	

	b o n	b o n
Pd1-N1	N1-Pd1-S1	
Pd1-S1	N1-Pd1-Cl1	
Pd1-Cl1	S1-Pd1-Cl1	
Pd1-Cl2	N1-Pd1-Cl2	
Fe1-C2	S1-Pd1-Cl2	
Fe1-C7	Cl1-Pd1-Cl2	
Fe1-C8	C13-S1-C12	
Fe1-C5	C13-S1-Pd1	
Fe1-C4	C12-S1-Pd1	
Fe1-C3	C16-N1-C14	
Fe1-C9	C16-N1-C11	
Fe1-C1	C14-N1-C11	
Fe1-C10	C16-N1-Pd1	
Fe1-C6	C14-N1-Pd1	
S1-C13	C11-N1-Pd1	
S1-C12	C2-C1-C5	
N1-C16	C2-C1-C11	
N1-C14	C5-C1-C11	
N1-C11	C3-C2-C1	
C1-C2	C4-C3-C2	
C1-C5	C3-C4-C5	
C1-C11	C4-C5-C1	
C2-C3	C10-C6-C7	
C3-C4	C8-C7-C6	
C4-C5	C9-C8-C7	
C6-C10	C8-C9-C10	
C6-C7	C6-C10-C9	
C7-C8	C1-C11-C12	
C8-C9	C1-C11-N1	
C9-C10	C12-C11-N1	
C11-C12	C11-C12-S1	
C14-C15	C15-C14-N1	
C16-C17	N1-C16-C17	

Table S6 Selected bond lengths (Å) and bond angles (°) in the crystal structure of 6.

Fig. S4 Molecules of **6** form a dimer with two ferrocene units placed in parallel orientation and direct contact. The formation of the dimer is based on a large stabilizing electrostatic complementarity between two ferrocene units (G. A. Bogdanovic and S. B. Novakovic, *CrystEngComm*, 2011, **13**, 6930–6932).