## Electronic Supplementary Information for:

## Soluble squaraine derivatives for $\mathbf{4 . 9 \%}$ efficient organic photovoltaic cells

By Hisahiro Sasabe ${ }^{* 1,2}$, Tsukasa Igrashi ${ }^{1}$, Yusuke Sasaki ${ }^{1}$, Guo Chen, ${ }^{2,3}$ Ziruo Hong ${ }^{2,4}$, Junji Kido* ${ }^{1,2}$
${ }^{1}$ Department of Organic Device Engineering, Yamagata University, ${ }^{2}$ Research Center for Organic Electronics 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan, ${ }^{3}$ Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Yanchang Road 149, Shanghai 200072, China, ${ }^{4}$ Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

General Procedures. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on JEOL $400(400 \mathrm{MHz})$ spectrometer. Mass spectra were obtained using a JEOL JMS-K9 mass spectrometer. Differential scanning calorimetry (DSC) was performed using a Perkin-Elmer Diamond DSC Pyris instrument under nitrogen atmosphere at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Thermogravimetric analysis (TGA) was undertaken using a SEIKO EXSTAR 6000 TG/DTA 6200 unit under nitrogen atmosphere at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Ultraviolet-visible (UV-vis) absorption spectra were collected using a UV-vis-NIR spectrophotometer (SHIMADZU, UV-3150). Photoluminescence (PL) spectra were measured using a FluroMax-4 (Horiba-Jobin-Yvon) luminescence spectrometer. The concentration of the solutions for UV-vis absorption and PL measurements was $1 \times 10^{-6} \mathrm{M}$ in chloroform. Thin films for UV-vis absorption and PL measurements were prepared by spin coating a chloroform solution onto quartz substrates. Cyclic voltammetry (CV) measurements were performed using a PC controlled ALS/CHI 660B electrochemical workstation in an $\mathrm{N}_{2}$-filled glove box. The experiments were conducted in 0.5 mM dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ solution of SQ with 0.13 M tetrabutylammonium tetrafluoroborate ( $\mathrm{TBABF}_{4}$, as supporting electrolyte) at a scan rate of $0.1 \mathrm{~V} / \mathrm{s}$ using a glassy carbon electrode as the working electrode, platinum wire as the counter electrode, and a $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode as the reference electrode. Ferrocene was used as an internal standard. The electrochemical potential was internally calibrated against the standard ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right.$) redox couple (with an absolute energy of -4.8 eV vs. vacuum). On the basis of the oxidation potential onset ( $\mathrm{E}_{\mathrm{ox}}$ ) and the reduction potential onset ( $\mathrm{E}_{\text {red }}$ ) referenced to the $\mathrm{Fc} / \mathrm{Fc}^{+}$internal standard, the HOMO and lowest unoccupied molecular orbital (LUMO) were calculated according to the equations $\mathrm{HOMO}=$ $-\left(\mathrm{E}_{\mathrm{ox}}+4.8\right)(\mathrm{eV})$ and $\mathrm{LUMO}=-\left(\mathrm{E}_{\text {red }}+4.8\right)(\mathrm{eV})$, where $\mathrm{E}_{\mathrm{ox}}$ and $\mathrm{E}_{\text {red }}$ are the oxidation potential onset and the reduction potential onset, respectively, vs. $\mathrm{Fe} / \mathrm{Fe}{ }^{+}$. The energy band gap $\left(\mathrm{E}_{\mathrm{g}}{ }^{\mathrm{ec}}\right.$ ) was calculated according to the equation $\mathrm{E}_{\mathrm{g}}{ }^{\mathrm{ec}}=\mathrm{LUMO}-\mathrm{HOMO}$.

Device fabrication and characterization: Patterned ITO-coated glass substrates were sequentially cleaned using detergent, deionized water, acetone, and isopropanol in an ultrasonic bath. The cleaned substrates were dried in an oven at $80^{\circ} \mathrm{C}$ for 12 h before use. Substrates were exposed to UV ozone for 20 min , and were then immediately transferred into a high-vacuum chamber for the deposition of $6-\mathrm{nm} \mathrm{MoO} 3$ at a base pressure of $1 \times 10^{-5} \mathrm{~Pa}$. Photoactive layers (thickness: $70 \pm 5 \mathrm{~nm}$ ) were fabricated by spin-coating $\mathrm{SQ}: \mathrm{PC}_{71} \mathrm{BM}$ solution $(20 \mathrm{mg} / \mathrm{ml}$ in chloroform) onto a $\mathrm{MoO}_{3}$-coated ITO surface in a $\mathrm{N}_{2}$-filled glove box. Finally, the substrates were transferred back to the high-vacuum chamber, where $\mathrm{BCP}(10 \mathrm{~nm})$ and $\mathrm{Al}(100 \mathrm{~nm})$ were deposited as the top electrode, resulting in a final OPV cell with the structure $\mathrm{ITO} / \mathrm{MoO}_{3}$ ( 6 $\mathrm{nm}) / \mathrm{SQ}: \mathrm{PC}_{71} \mathrm{BM}(70 \mathrm{~nm}) / \mathrm{BCP}(10 \mathrm{~nm}) / \mathrm{Al}(100 \mathrm{~nm})$. The active area of the OPV cells was 0.09 $\mathrm{cm}^{2}$, as defined by the overlap of the ITO anode and Al cathode. Current density-voltage (J-V) and external quantum efficiency (EQE) characterizations of OPV cells were performed on a CEP-2000 integrated system manufactured by Bunkoukeiki Co. The integration of EQE data over a AM1.5G solar spectrum yielded calculated $\mathrm{J}_{\mathrm{sc}}$ values with an experimental variation of less than $3 \%$ relative to the $\mathrm{J}_{\mathrm{sc}}$ measured under $100-\mathrm{mW} / \mathrm{cm}^{2}$-simulated AM1.5G light illumination.


Scheme 1. Synthesis of SQ-RP

Synthetic route of SQs is shown in Scheme 1. The precursor 4 was prepared via a Buchwald-Hartwig amination reaction of bromide $\mathbf{1}$ with alkylaniline $\mathbf{2}$ followed by a demethylation reaction of $\mathbf{3}$. Then, a condensation reaction between amine $\mathbf{4}$ and squaric acid 5 gave the target SQ-RP 6 in $82-88 \%$ yield.

Synthesis of SQ-BP. A mixture of aniline precursor ( $1.64 \mathrm{~g}, 6.38 \mathrm{mmol}$ ), squaric acid ( 0.36 g , 3.20 mmol ), 1-butanol ( 15 mL ), and toluene ( 45 mL ) was stirred for 16 hours at reflux temperature under $\mathrm{N}_{2}$ flow with azeotropic distillation of water. After the mixture was concentrated to ca. 10 mL , cyclohexane ( 30 mL ) was added to the reaction mixture. Then, the solvent was cooled to room temperature. The precipitate was filtered, and washed with methanol and hexanes, dried in vacuo to afford SQ-BP as green microcrystals. The compound was
further purified by recrystallization using cyclohexane-toluene ( $1.78 \mathrm{~g}, 88 \%$ ). The purity of SQ was confirmed by HPLC analysis using THF-methanol ( $1: 4$ ) as eluents.
SQ-BP: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 10.97(\mathrm{~s}, 4 \mathrm{H}), 7.45(\mathrm{dd}, 4 \mathrm{H}, J=7.7,7.7 \mathrm{~Hz}), 7.36(\mathrm{t}, 2 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 7.18(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.70(\mathrm{~s}, 4 \mathrm{H}), 3.69(\mathrm{t}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz}), 1.72-1.64(\mathrm{~m}, 4 \mathrm{H})$, $1.38-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}) \mathrm{ppm}$; MS: $\mathrm{m} / \mathrm{z} 593[\mathrm{M}]^{+}$; Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$ : C, 72.95; H, 6.12; N, 4.73\%. Found: C, 72.99; H, 6.11; N, 4.66\%.

SQ-OP: SQ-OP was synthesized by the same procedure using the corresponding aniline precursor. Yield: $83 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 10.96$ (s, 4 H ), 7.45 (dd, $4 \mathrm{H}, J=7.7,7.7$ $\mathrm{Hz}), 7.36$ (t, 2H, $J=7.5 \mathrm{~Hz}$ ), 7.17 (d, 4H, $J=7.7 \mathrm{~Hz}$ ), 5.70 (s, 4H), 3.68 (t, 4H, $J=8.0 \mathrm{~Hz}$ ), $1.72-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 20 \mathrm{H}), 0.87(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) \mathrm{ppm}$; MS: $m / z 706[\mathrm{M}]^{+}$; Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{6}$ : C, $74.79 ; \mathrm{H}, 7.44 ; \mathrm{N}, 3.97 \%$. Found: C, $75.24 ; \mathrm{H}, 7.68 ; \mathrm{N}, 3.89 \%$. SQ-DP: SQ-DP was synthesized by the same procedure using the corresponding aniline precursor. Yield: $82 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 10.97$ (s, 4 H ), 7.45 (dd, $4 \mathrm{H}, J=7.7,7.7$ $\mathrm{Hz}), 7.36(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.17(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.69(\mathrm{~s}, 4 \mathrm{H}), 3.68(\mathrm{t}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz})$, $1.72-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 36 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}) \mathrm{ppm} ; \mathrm{MS}: m / z 818[\mathrm{M}]^{+}$; Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{6}$ : C, 76.44; H, 8.39; N, 3.43\%. Found: C, 76.44; H, 8.66; N, 3.35\%.

Table S1. Solubility of SQ-RP derivatives.

| Compound | $\mathrm{CHCl}_{3}$ | Toluene | THF | 1,4-dioxane |
| :---: | :---: | :---: | :---: | :---: |
| SQ-MP | $<1 \mathrm{mg} / \mathrm{ml}$ |
| SQ-BP | $>\mathbf{8} \mathbf{m g} / \mathbf{m l}$ | $<1 \mathrm{mg} / \mathrm{ml}$ | $<1 \mathrm{mg} / \mathrm{ml}$ | $<1 \mathrm{mg} / \mathrm{ml}$ |
| SQ-OP | $>\mathbf{1 0} \mathbf{m g} / \mathbf{m l}$ | $\fallingdotseq 1 \mathrm{mg} / \mathrm{ml}$ | $\fallingdotseq 1 \mathrm{mg} / \mathrm{ml}$ | $<1 \mathrm{mg} / \mathrm{ml}$ |
| SQ-DP | $>\mathbf{1 6} \mathbf{m g} / \mathbf{m l}$ | $>\mathbf{1 6} \mathbf{m g} / \mathbf{m l}$ | $>\mathbf{1 6} \mathbf{m g} / \mathrm{ml}$ | $<1 \mathrm{mg} / \mathrm{ml}$ |

Table S2. Physical properties of SQ-RP derivatives.

| Compound | solution in $\mathrm{CHCl}_{3}{ }^{\text {a }}$ |  | thin film ${ }^{\text {b }}$ | $\mathrm{T}_{\mathrm{g}}{ }^{\mathrm{c}} / \mathrm{T}_{\mathrm{m}}{ }^{\mathrm{d})} / \mathrm{T}_{\mathrm{d}}{ }^{\text {d }}\left({ }^{\circ} \mathrm{C}\right)$ | HOMO/LUMO ${ }^{\text {e }}$ (eV) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\varepsilon\left(10^{5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ | $\lambda_{\text {max }}(\mathrm{nm})$ | $\lambda_{\text {max }}(\mathrm{nm})$ |  |  |
| SQ-MP | 3.2 | 645 | n.d. ${ }^{\text {f) }}$ | n.d. / n.d. / 321 | n.d. ${ }^{\text {g }}$ ) |
| SQ-BP | 3.6 | 650 | 697 | n.d. / n.d. / 322 | 5.3 / 3.6 |
| SQ-OP | 3.5 | 650 | 694 | n.d. / 230 / 290 | 5.3 / 3.6 |
| SQ-DP | 3.5 | 650 | 581, 673 | n.d. / 177 / 298 | 5.3 / 3.6 |

a) Absorption and emission spectra were measured in $\mathrm{CHCl}_{3}\left(10^{-6} \mathrm{M}\right)$. b) Thin film was formed from $3 \mathrm{mg} / \mathrm{ml}$ $\mathrm{CHCl}_{3}$ solution on a quartz substrate. c) Measured by a DSC. d) Measured by a TGA. e) Measured by a CV (0.5 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). f) Solubility is too low to form uniform thin solid film. g) Solubility is too low to measure.


Fig. S1. DTA-TG curves of a) SQ-BP, b) SQ-OP, c) SQ-DP.


Fig. S2. UV-vis absorption and photoluminescence (PL) of a) DIB-SQ, b) SQ-BP, c) SQ-OP, d) SQ-DP in $\mathrm{CHCl}_{3}\left(10^{-6} \mathrm{M}\right)$.


Fig. S3. UV-vis absorption and photoluminescence (PL) spectra of a) DIB-SQ, b) SQ-BP, c) SQ-OP, d) SQ-DP as 20 nm thin film on quartz substrate.


Fig. S4. Cyclic voltammetry ( CV ) of $\mathrm{SQ}-\mathrm{RP}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with 0.13 M TBABF 4 using ferrocene/ferrocenium redox couple ( $\mathrm{Fc} / \mathrm{Fc}^{+}$). a) SQ-BP, b) SQ-OP, c) SQ-DP.


Fig. S5. $J-V$ curves illuminated under AM 1.5 G solar spectrum at $100 \mathrm{~mW} / \mathrm{cm}^{2}$ illumination and EQE spectra of $\mathrm{SQ}-\mathrm{BP}: \mathrm{PC}_{70} \mathrm{BM}$-based devices with various $\mathrm{SQ}-\mathrm{BP}: \mathrm{PC}_{70} \mathrm{BM}$ weight ratios.


Fig. S6. PCE of $\mathrm{SQ}-\mathrm{BP}: \mathrm{PC}_{70} \mathrm{BM}=1: 3$-based device versus power intensity.


Fig. S7. (a) $J-V$ curves illuminated under AM 1.5 G solar spectrum at $100 \mathrm{~mW} / \mathrm{cm}^{2}$ illumination; and (b) EQE spectra of SQ-RP: $\mathrm{PC}_{70} \mathrm{BM}=1: 3$-based device.


Fig. S8. UV-vis spectra of active layers with a) $\mathrm{SQ}-\mathrm{BP}: \mathrm{PC}_{70} \mathrm{BM}$, b) $\mathrm{SQ}-\mathrm{RP}: \mathrm{PC}_{70} \mathrm{BM}=1: 3$.

Table S3. Key OPV parameters of SQ-based devices based on various $\mathrm{SQ}: \mathrm{PC}_{71} \mathrm{BM}$ weight ratios.

| Compound | weight ratio | Voc (V) | Jsc (mA/cm2) | FF | PCE (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1: 2$ | $0.98(0.98)$ | $10.40(10.27)$ | $0.43(0.43)$ | $4.37(4.29)$ |
| SQ-BP | $1: 3$ | $0.98(0.98)$ | $11.01(10.99)$ | $0.45(0.45)$ | $4.86(4.76)$ |
|  | $1: 4$ | $0.98(0.98)$ | $10.61(10.91)$ | $0.41(0.40)$ | $4.29(4.19)$ |
| SQ-OP | $1: 3$ | $0.99(0.99)$ | $9.96(9.86)$ | $0.41(0.41)$ | $4.08(4.05)$ |
| SQ-DP | $1: 3$ | $0.96(0.96)$ | $5.72(5.75)$ | $0.36(0.35)$ | $1.97(1.93)$ |

Average values of 8 devices are shown in parentheses.

