Supporting information

Cost-Effective CuO Nanotube Electrodes for Energy Storage and Nonenzymatic Glucose Detection

Yang Lu,^{*a,b,c*} Kangwen Qiu,^{*a,b*} Deyang Zhang,^{*a,b,d*} Jing Lin,^{*c*} Xianming Liu,^{*e*} Chengchun Tang,^{**c*} Jang-Kyo Kim,^{*f*} Yongsong Luo,^{**a,b*}

^aSchool of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.

^bKey Laboratory of Advanced Micro/Nano Functional Materials, Xinyang Normal University, Xinyang 464000, P. R. China.

^cSchool of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, *P.R.China.*

^dSchool of Materials Science and Technology, China University of Geosciences, Beijing 100083, P. R. China.

^eCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, *P. R. China.*

^fDepartment of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.

Fig. S1 FESEM images taken at different stages of $Cu(OH)_2$ nanotube growth on a Cu foil: (a, b) 0 s; (c, d) 5 min; (e, f) 10 min; and (g, h) 20 min.

Fig. S2 (a) TEM image and (b) lattice fringes of a CuO nanotube with the corresponding selected area electron diffraction (SAED) pattern (inset).

Fig. S3 TG and DTA curves of as-prepared $Cu(OH)_2$ precursor.

Fig. S4 Photographs and corresponding contact angles of water droplets on the surfaces of (a) $Cu(OH)_2$ and (b) CuO nanotubes.

Fig. S5 FESEM images of CuO nanotube electrode after 5000 discharge/charge cycles at 1 A g^{-1} .

Fig. S6 Electrochemical impedance spectra of CuO nanotube electrode after 1st and 5000th cycles.

Materials	$\mathbf{R}_{ct}(\Omega)$	$\mathbf{R}_{s}(\Omega)$
Cu(OH)2 nanotubes	5.11	2.79
CuO nanotubes	3.09	1.71

Table S1 Internal resistance (R_s) and charge transfer resistance (R_{ct}) of synthesized composites.

Table S2 Internal resistance (R_s) and charge transfer resistance (R_{ct}) of CuO nanotube electrode after 1st and 5000th cycles.

Cycles	$\mathbf{R}_{\mathrm{ct}}(\Omega)$	$\mathbf{R}_{s}(\Omega)$
1 st	3.09	1.71
5000 th	4.50	1.83

 Table S3 Comparison of the key performance characteristics of different CuO-based

 electrodes for enzyme-free electro-oxidation of glucose.

Type of electrodes	Potential (V)	Sensitivity (µA mM ⁻¹ cm ⁻	Linear range (up to, mM)	Reference
CuO/MWCNTs	0.7	2109	3	54
CuO fibers	0.4	431	2.5	55
CuO nanospheres	0.6	404.5	2.6	56
CuO nanoparticles	0.55	1397	2.3	57
CuO nanotubes	0.5	2231	3	Current work