Electronic Supplementary Information

Biomass-involved, facile and one-pot synthesis of N-aryl-2(3H)-benzoxazolones from methyl 3-dehydroshikimiate

Ensheng Zhang,^{a,d} Xuejing Zhang,^b Yuchen Cai,^b Dejian Wang,^{a,d} Tianlong Xu,^{a,d} Jun

Li,^c Ming Yan^b and Yong Zou^{*a,b}

- ^a Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P. R. China.
- ^b School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China, E-mail: zou jinan@163.com.
- ^c Second Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang 310009, P. R. China.

^d University of Chinese Academy of Sciences, Beijing, 100039, P. R. China.

Contents

I- General Details II-Experimental Procedure III-Characterization Data for products	\$1-\$2 \$2-\$4 \$5-\$17		
		IV- ¹ H and ¹³ C spectra of compounds	S18-S57

I- General Details

(-)-Shikimic acid was kindly provided as a natural product by Guangxi Wan Shan Spice Co. Ltd. with chromatography grade. (-)-Methyl 3-dehydroshikimate was readily prepared from (-)-shikimic acid through an improved strategy of our previous report. Petroleum ether (PE) used in the experiments refers to the boiling fraction of 60-90 °C. Other reagents and solvents were purchased from commercial sources and used without further purification unless otherwise stated.

Reactions were monitored by thin-layer chromatography (TLC). Column chromatography was performed on silica gel (200-300 mesh) using EtOAc-PE system as eluent. Melting points were measured on a Thiele apparatus and were uncorrected. Microwave experiments were carried out with a scientific WBFY microwave reactor in a flask connected with a condenser under atmosphere pressure. (This microwave reactor was a monomode device with a tunable power controller from 80 W to 800 W). Reaction temperature was detected using an infrared thermometer and the ramp time is included as part of the reaction time. ¹H NMR and ¹³C NMR spectra were measured on a 400 MHz spectrometer (¹H 400 MHz, ¹³C 100 MHz) using CD₃COCD₃ or DMSO-*d*₆ as the solvent at room temperature. Chemical shifts were reported in parts per million (ppm) and are calibrated using residual undeuterated solvent as an internal reference. HRMS spectra were recorded on a LC-Q-TOF (ESI) apparatus. Mass spectrometry were measured on a Shimadzu GC-MS QP5050A in electron ionization mode and a Thermo Finnigan LCQ DECA XP ion trap mass spectrometer in electrospray ionization mode.

II- Experimental Procedure

II-1 Synthesis of (-)-methyl 3-dehydroshikimate (3-MDHS)

Based on our previous studies, an improved method for the synthesis of (-)-methyl 3-dehydroshikimate has been established as follows:

Step 1:

To a solution of (-)-shikimic acid (17.4 g, 100 mmol) in MeOH (150 ml) was added p-TsOH (1.90 g, 10 mmol). The resulting mixture was heated to reflux until completion of the reaction (monitored by TLC). The mixture was filtered and the filtrate was evaporated under reduced pressure to afford a pale yellow oil, which was purified by recrystallization from EtOAc to give (-)-methyl shikimate as a white powder.

Step 2:

To a mixture of (-)-methyl shikimate (9.40 g, 0.05 mol) in THF (220 ml) was added IBX (16.8 g, 0.06 mol). The resulting mixture was stirred at 10-20 °C for the completion of the reaction (monitored by TLC). The iodosylbenzoic acid (IBA) byproduct was filtered off and recycled via oxidation into IBX with oxone. The filtrate was concentrated under reduced pressure to afford crude (-)-methyl 3-dehydroshikimate as a white solid. The crude product was recrystallized from EtOAc to give methyl 3-dehydroshikimiate (3-MDHS) in pure form as white crystals.

II-2 General procedure for the preparation of compound 4a (Table 1, entries 1-9)

To a solution of methyl 3-MDHS (0.19 g, 1 mmol), arylamine (1.0 mmol) in solvent (5 ml) was added *p*-TsOH (0.10 mmol). The flask was then placed into the microwave reactor and the mixture was irradiated with stirring for indicated minutes (t_1) at T₁ °C. Then, Et₃N (6 mmol) was added to the mixture, and BTC (1.5 mmol) in CH₃CN (3 ml) was added dropwise. The mixture was stirred for the indicated hours (t_2) at room temperature. After completion of the reaction as indicated by TLC, the mixture was washed with sodium carbonate solution (50 ml, 5 %) and extracted with ethyl acetate (3 × 50 ml). The combined organic layers was dried over anhydrous MgSO₄ and concentrated under vacuum to furnish the crude product, which could be further purified by recrystallization from EtOAc-PE.

II-3 General procedure for the preparation of compound 4a-4m and 4q-4x (Table 2, entry 1-13, 17-21 and Scheme 2)

To a solution of 3-MDHS (0.19 g, 1.0 mmol), arylamine (1.0 mmol) in CH₃CN (5 ml) was added *p*-TsOH (0.05 mmol). The flask was then placed into the microwave reactor and the mixture was refluxed (240 W) with stirring for indicated minutes (t_1). Then, BTC (1.5 mmol) was added and the resulting mixture was refluxed (240 W) for the indicated minutes (t_2). After completion of the reaction as indicated by TLC, the reaction mixture was poured into sodium carbonate solution (50 ml, 5 %) and stirred vigorously. The resulting solid was filtered and dried to furnish the desired product in pure form. The isolated products could be further purified by recrystallization from EtOAc-PE or by column chromatography using EtOAc-PE as eluent if necessary.

II-4 Procedure for the preparation of compounds 4n and 4o (Table 2, entry 14-15)

To a solution of 3-MDHS (0.19 g, 1 mmol), arylamines (1.0 mmol) in CH₃CN (5 ml) was added *p*-TsOH (0.10 mmol). The flask was then placed into the microwave reactor and the mixture was refluxed (240 W) with stirring for indicated minutes (t_1). Then, BTC (1.5 mmol) was added and the resulting mixture was refluxed (240 W) with stirring for the indicated minutes (t_2). After completion of the reaction as indicated by TLC, the reaction mixture was washed with sodium carbonate solution (50 ml, 5 %) and extracted with ethyl acetate (3 × 50 ml). The combined organic layers was dried over anhydrous MgSO₄ and concentrated under vacuum to furnish the crude product, which was purified by column chromatography on silica gel (200-300 mesh) using EtOAc-PE (1: 6) as eluent to afford 4n and 40 in pure form.

II-5 General procedure for the preparation of compound I (Scheme 3)

To a solution of 3-MDHS (0.19 g, 1.0 mmol), 2-amino-4-chlorobenzoic acid (0.17 g, 1.0 mmol) in CH₃CN (5 ml) was added *p*-TsOH (0.05 mmol). The flask was then placed into the microwave reactor and the mixture was refluxed (240 W) with stirring for 10 minutes. Then, Et₃N (6 mmol) was added to the mixture, and BTC (1.5 mmol) in CH₃CN (3 ml) was added dropwise. The mixture was stirred for 3 hours at room temperature. After completion of the reaction as indicated by TLC, the reaction mixture was poured into sodium carbonate solution (50 ml, 5 %) and stirred vigorously. The resulting solid was filtered and dried to furnish the desired product in pure form. The isolated products could be further purified by recrystallization from EtOAc-PE.

III-1 Characterization Data for (-)-methyl shikimate and 3-MDHS

(-)-Methyl shikimate

White solid, (yield: 16 g, 85 %). m.p.112~113 °C; $[\alpha]_D^{20} = -142^\circ$ (c = 0.2, MeOH); ¹H NMR (CD₃COCD₃, 400 MHz) δ : 6.73 (m, 1H, 2-H), 4.38 (m, 1H, 3-H), 4.02 (s, 1H, 4-OH D₂O exchangeable), 4.00 (brs, 2H, 3,5-OH D₂O exchangeable), 3.69 (s, 3H, OCH₃), 3.85 (m, 1H, 5-H), 3.68 (m, 1H, 4-H), 2.64 (dd, J = 17.6, 4.4 Hz, 1H, 6 α -H), 2.18 (dd, J = 17.6, 6.8 Hz, 1H, 6 β -H); MS (EI): m/z = 188 [M]⁺, 170 [M - H₂O]⁺, 157 [M - OCH₃]⁺, 129 [M - COOCH₃]⁺.

(-)-Methyl-3-dehydroshikimate (3-MDHS)

White solid, (yield: 6.70 g, 72 %). m.p.122~123 °C; $[\alpha]_D^{20} = -55^\circ$ (c = 0.2, MeOH) ¹H NMR (CD₃COCD₃, 400 MHz) δ : 6.45 (d, J = 2.8 Hz, 1H, 2-H), 4.57 (d, J = 3.6 Hz, 1H, 4-OH D₂O exchangeable), 4.47 (d, J = 3.6 Hz, 1H, 5-OH D₂O exchangeable), 4.57 (dd, J = 10.4, 3.6 Hz, 1H, 4-H), 3.85 (m, 1H, 5-H), 3.81 (s, 3H, OCH₃), 3.06 (dd, J = 18.4, 5.2 Hz, 1H, 6 α -H), 2.18 (ddd, J = 18.4, 8.8, 3.2 Hz, 1H, 6 β -H); MS (EI): m/z = 186 [M]⁺, 155 [M - OCH₃]⁺, 127 [M - COOCH₃]⁺

III-2 Characterization Data for products

5-methoxycarbonyl-3-phenyl-2(3*H*)-benzoxazolone (4a).

White flake crystal; yield: 0.25 g (92 %); mp 138-140 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 7.85 (dd, J = 8.6, 1.6 Hz, 1H), 7.63 (d, J = 4.0 Hz, 4H), 7.57 (d, J = 8.4 Hz, 1H), 7.53 (m, 1H), 7.44 (d, J = 1.6 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 165.4 (C=O), 152.3 (C=O), 145.6, 132.8, 131.7, 129.9, 128.8, 125.8,

125.5, 124.9, 110.2, 109.2, 52.3; IR (KBr) v_{max} /cm⁻¹ 3050, 2988, 2950, 1777, 1709, 1620, 1596, 1505, 1467, 1380, 1284, 1246, 761, 691; MS (EI): m/z (%) = 269 ([M]⁺, 100), 238 ([M - OCH₃]⁺, 94), 210 ([M - COOCH₃]⁺, 15), 194 (18), 166 (16); HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₅H₁₂NO₄: 270.0761; found: 270.0763.

5-methoxycarbonyl-3-(4-methoxyphenyl)-2(3*H*)-benzoxazolone (4b).

White crystal; yield: 0.28 g (95 %); mp.124-126 °C; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.84$ (dd, J = 8.4, 1.6 Hz, 1H), 7.54-7.57 (m, 3H), 7.36 (d, J = 1.6 Hz, 1H), 7.16 (dd, J = 6.8, 2.0 Hz, 2H), 3.84 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 165.5$ (C=O), 159.4 (C=O), 152.6, 145.5, 132.3, 127.6, 125.5, 125.1, 124.7, 115.1, 110.1, 109.1, 55.5, 52.3; MS (EI): m/z (%) = 299 ([M]⁺, 100), 284 ([M - CH₃]⁺, 7), 268 ([M - OCH₃]⁺, 18), 240 ([M - COOCH₃]⁺, 14), 196 (7); HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd for C₁₆H₁₄NO₅: 300.0866; found: 300.0874.

5-methoxycarbonyl-3-(4-methylphenyl)-2(3*H*)-benzoxazolone (4c).

White acicular crystal; yield: 0.26 g (93 %); mp 147-149 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.85 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 1.6 Hz, 1H), 3.81 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 165.4 (C=O), 152.4 (C=O), 145.5, 138.6, 131.9, 130.3, 130.1, 125.7, 125.5, 124.8, 110.1, 109.2, 52.3, 20.7; IR (KBr) *v*_{max}/cm⁻¹ 3120, 3095, 3002, 2954, 2924, 1780, 1733, 1609, 1521, 1490, 1452, 1388, 1289, 1248,

835; MS (EI): m/z (%) = 283 ([M]⁺, 100), 252 ([M - OCH₃]⁺, 48), 224 ([M - COOCH₃]⁺, 6), 180 (18), 152 (4); HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₆H₁₄NO₄: 284.0917; found: 284.0921.

3-(4-iodophenyl)-5-methoxycarbonyl-2(3H)-benzoxazolone (4d).

Grey solid; yield: 0.34 g (87 %); mp 169-171 °C; ¹H NMR (400 MHz, DMSO-*d₆*): $\delta = 8.00$ (d, J = 8.4 Hz, 2H), 7.86 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 1.6 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d₆*): $\delta = 165.4$ (C=O), 152.1 (C=O), 145.6, 138.7, 132.6, 131.3, 127.8, 125.5, 125.0, 110.2, 109.3, 94.7, 52.3; IR (KBr) v_{max} /cm⁻¹ 3112, 3083, 3059, 2964, 1776, 1713, 1618, 1497, 1458, 1422, 1382, 1290, 1250, 1199, 1004, 824; MS (EI): m/z (%) = 395 ([M]⁺, 100), 364 ([M - OCH₃]⁺, 38), 182 (16), 153 (13); HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₁₅H₁₁INO₄: 395.9727; found: 395.9730.

3-(4-bromophenyl)-5-methoxycarbonyl-2(3*H*)-benzoxazolone (4e).

White solid; yield: 0.30 g (87 %); mp 168-170 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 7.83-7.88 (m, 3H), 7.62 (dd, J = 6.8, 2.0 Hz, 2H), 7.58 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 1.6 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 165.4 (C=O), 152.1 (C=O), 145.5, 132.9, 132.1, 131.4, 127.9, 125.6, 125.0, 121.6, 110.2, 109.3, 52.3; IR (KBr) $v_{\text{max}}/\text{cm}^{-1}$ 3102, 3069, 2992, 2838, 1776, 1727, 1619, 1498, 1459, 1401,

1382, 1281, 1237, 1149, 1005, 829; MS (EI): m/z (%) = 349 ($[M + 2]^+$, 94), 347 ($[M]^+$, 100), 318 (53), 316 ($[M - OCH_3]^+$, 55); HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₁₅H₁₁Br⁷⁹NO₄: 347.9866; found: 347.9862.

3-(4-chlorophenyl)-5-methoxycarbonyl-2(3H)-benzoxazolone (4f).

White acicular crystal; yield: 0.26 g (85 %); mp 144-146 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.86 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.66-7.72 (m, 4H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 1.6 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 165.4 (C=O), 152.1 (C=O), 145.5, 133.2, 131.7, 131.4, 129.9, 127.6, 125.5, 125.0, 110.2, 109.3, 52.3; IR (KBr) v_{max} /cm⁻¹ 3096, 3057, 2994, 2946, 2888, 2839, 1781, 1710, 1623, 1502, 1460, 1434, 1409, 1385, 1284, 1242, 1107, 1006, 837; MS(EI): m/z (%) = 305 ([M + 2]⁺, 33), 303 ([M]⁺, 100), 272 ([M - OCH₃]⁺, 62), 244 ([M - COOCH₃]⁺, 11); HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₁₅H₁₁Cl³⁵NO₄: 304.0371; found: 304.0364.

3-(4-fluorophenyl)-5-methoxycarbonyl-2(3*H*)-benzoxazolone (4g).

White solid; yield: 0.23 g (79 %); mp > 200 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.86 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.69-7.73 (m, 2H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.46-7.50 (m, 2H), 7.41 (d, *J* = 1.6 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 165.4 (C=O), 162.8 (d, ¹*J*_{CF} = 244.7 Hz, C-a), 152.4, 145.5, 131.8, 129.0 (d, ⁴*J*_{CF} = 2.6

Hz, C-d), 128.5 (d, ${}^{3}J_{CF}$ = 9.0 Hz, C-c), 125.5, 124.9, 116.9 (d, ${}^{2}J_{CF}$ = 23.0 Hz, C-b), 110.1, 109.1, 52.3; IR (KBr) v_{max} /cm⁻¹ 3064, 2997, 2953, 2845, 1782, 1707, 1624, 1514, 1459, 1420, 1384, 1285, 1249, 1103, 1008, 844, 765; MS (EI): m/z (%) = 287 ([M]⁺, 100), 256 ([M - OCH₃]⁺, 73), 228 ([M - COOCH₃]⁺, 11), 212 (17); HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd for C₁₅H₁₁FNO₄: 288.0667; found: 288.0660.

3-(4-acetylphenyl)-5-methoxycarbonyl-2(3*H*)-benzoxazolone (4h).

Gray solid; yield: 0.26 g (83 %); mp > 200 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.19 (d, *J* = 8.4 Hz, 2H), 7.88 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.56 (d, *J* = 1.2 Hz, 1H), 3.82 (s, 3H), 2.65 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 197.1 (C=O), 165.4 (C=O), 152.0 (C=O), 145.6, 136.8, 136.4, 131.1, 129.8, 125.6, 125.4, 125.2, 110.3, 109.5, 52.4, 26.8; IR (KBr) *v*_{max}/cm⁻¹ 3012, 2961, 2857, 1778, 1711, 1678, 1600, 1514, 1490, 1451, 1380, 1294, 1264, 1091, 1006, 844, 766; MS (EI): m/z (%) = 311 ([M]⁺, 54), 296 ([M - CH₃]⁺, 100), 280 ([M - OCH₃]⁺, 12); HRMS (ESI-TOF): *m*/z [M + H]⁺ calcd for C₁₇H₁₄NO₅: 312.0866; found: 312.0864.

5-methoxycarbonyl-3-(4-nitrophenyl)-2(3*H*)-benzoxazolone (4i).

Yellow solid; yield: 0.25 g (80 %); mp > 200 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 8.48 (dd, J = 6.8, 2.0 Hz, 2H), 7.96 (dd, J = 6.8, 2.0 Hz, 2H), 7.90 (dd, J = 8.4, 1.6 Hz,

1H), 7.64 (d, J = 1.6 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 165.4$ (C=O), 151.8 (C=O), 146.5, 145.7, 138.6, 130.7, 126.2, 125.7, 125.5, 125.2, 110.4, 109.7, 52.4; IR (KBr) v_{max} /cm⁻¹ 3122, 3084, 3062, 3003, 2950, 2840, 1788, 1727, 1596, 1523, 1503, 1455, 1380, 1314, 1288, 1263, 1148, 1006, 830, 761; MS (EI): m/z (%) = 314 ([M]⁺, 100), 283 ([M - OCH₃]⁺, 94), 255 ([M - COOCH₃]⁺, 6); HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₀N₂NaO₆: 337.0431; found: 337.0432.

5-methoxycarbonyl-3-(2-methylphenyl)-2(3H)-benzoxazolone (4j).

White solid; yield: 0.25 g (89 %); mp 138-140 °C; ¹H NMR (400 MHz, DMSO-*d₆*): δ = 7.86 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.50-7.55 (m, 3H), 7.42-7.46 (m, 1H), 7.13 (d, *J* = 1.6 Hz, 1H), 3.79 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d₆*): δ = 165.4 (C=O), 152.1 (C=O), 145.8, 136.0, 132.1, 131.6, 131.0, 130.1, 128.1, 127.6, 125.7, 124.9, 110.3, 109.1, 52.3, 17.0; IR (KBr) *v*_{max}/cm⁻¹ 3116, 3084, 3056, 3001, 2955, 1777, 1720, 1620, 1499, 1450, 1378, 1354, 1288, 1247, 1145, 1089, 998, 761; MS (EI): m/z (%) = 283 ([M]⁺, 100), 252 ([M - OCH₃]⁺, 32), 224 ([M - COOCH₃]⁺, 5); HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₁₆H₁₄NO₄: 284.0917; found: 284.0920.

3-(2-chlorophenyl)-5-methoxycarbonyl-2(3*H*)-benzoxazolone (4k).

White solid; yield: 0.23 g (76 %); mp 152-154 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 7.88 (dd, J = 8.4, 1.6 Hz, 1H), 7.80-7.85 (m, 2H), 7.60-7.69 (m, 3H), 7.19 (d, J =

1.2 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_{δ}): $\delta = 165.3$ (C=O), 151.8 (C=O), 145.6, 132.0, 131.6, 131.5, 130.8, 130.6, 129.6, 129.1, 125.8, 125.2, 110.5, 109.3, 52.3; IR (KBr) v_{max} /cm⁻¹ 3070, 2954, 1782, 1715, 1620, 1587, 1499, 1458, 1382, 1283, 1248, 1091, 1001, 956, 761; MS (EI): m/z (%) = 305 ([M + 2]⁺, 33), 303 ([M]⁺, 100), 272 ([M - OCH₃]⁺, 80), 244 ([M - COOCH₃]⁺, 12); HRMS: (ESI-TOF) m/z [M + H]⁺ calcd. for C₁₅H₁₁Cl³⁵NO₄: 304.0371; found: 304.0364.

5-methoxycarbonyl-3-(2-methoxyphenyl)-2(3*H*)-benzoxazolone (4I).

White acicular crystal; yield: 0.27 g (90 %); mp 164-166 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : ppm 7.84 (dd, *J*= 8.4, 1.6 Hz, 1H), 7.56-7.60 (m, 3H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.14-7.19 (m, 2H), 3.79 (s, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 165.7 (C=O), 155.1 (C=O), 152.6, 145.8, 132.3, 131.8, 129.5, 125.9, 125.1, 121.4, 120.4, 113.3, 110.4, 109.7, 56.2, 52.6; IR (KBr) *v*_{max}/cm⁻¹ 3139, 3081, 3023, 2979, 2956, 2834, 1781, 1731, 1618, 1599, 1510, 1490, 1380, 1289, 1250, 1095, 1019, 759, 743; MS (EI): m/z (%) = 299 ([M]⁺, 100), 268 ([M - OCH₃]⁺, 22), 240 ([M - COOCH₃]⁺, 8); HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₁₆H₁₄NO₅: 300.0866; found: 300.0872.

5-methoxycarbonyl-3-(2,5-dichlorophenyl)-2(3*H*)-benzoxazolone (4m).

White solid; yield: 0.23 g (69 %); mp 182-184 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 8.04 (d, J = 2.4 Hz, 1H) 7.88 (dd, J = 8.4, 1.6 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H) , 7.76 (dd, J = 8.4, 2.8 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.31 (d, J = 1.6 Hz, 1H), 3.80

(s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 165.3$ (C=O), 151.7 (C=O), 145.5, 132.8, 132.1, 132.0, 131.2, 130.9, 130.7, 130.6, 125.9, 125.4, 110.5, 109.7, 52.4; IR (KBr) v_{max} /cm⁻¹ 3121, 3095, 3036, 2997, 2953, 2846, 1770, 1722, 1617, 1568, 1492, 1453, 1409, 1362, 1287, 1253, 1196, 1150, 1100, 1006, 765, 717; MS (EI): m/z (%) = 341 ([M + 4]⁺, 12), 339 ([M + 2]⁺, 69), 337 ([M]⁺, 100), 306 ([M - OCH₃]⁺, 82), 278 ([M - COOCH₃]⁺, 4); HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₁₅H₁₀Cl₂³⁵NO₄: 337.9981; found: 337.9976.

5-methoxycarbonyl-3-(2,4,6-trimethylphenyl)-2(3*H*)-benzoxazolone (4n).

White solid; yield: 0.21 g (67 %); mp 164-166 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.47$ (d, J = 8.2 Hz, 1H) 7.25 (dd, J = 8.2, 2.0 Hz, 1H), 6.98 (s, 2H), 6.60 (d, J = 2.0 Hz, 1H), 3.71 (s, 3H), 2.26 (s, 3H), 2.04 (s, 6H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 165.9$ (C=O), 151.2 (C=O), 140.5, 139.5, 136.5, 135.7, 133.8, 129.6, 129.1, 122.9, 117.2, 112.1, 52.1, 20.6, 17.6; IR (KBr) v_{max} /cm⁻¹ 3012, 2951, 2918, 2856, 1781, 1728, 1697, 1612, 1520, 1483, 1444, 1377, 1299, 1207, 1160, 1001, 762; MS (EI): m/z (%) = 311 ([M]⁺, 33), 285 (100); HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₈H₁₇NNaO₄: 334.1050; found: 334.1048.

3-(2,6-diethylphenyl)-5-methoxycarbonyl-2(3*H*)-benzoxazolone (40).

White solid; yield: 0.19 g (60 %); mp 173-175 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.49$ (d, J = 8.4 Hz, 2H), 7.21-7.28 (m, 3H), 6.63 (d, J = 1.6 Hz, 1H), 3.71 (s, 3H), 2.46-2.52 (m, 4H), 1.01 (t, J = 7.6 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 165.8$ (C=O), 151.2 (C=O), 142.7, 140.3, 140.1, 135.3, 128.5, 127.4, 126.7, 122.9, 117.1, 112.4, 52.1, 23.9, 14.5; IR (KBr) v_{max}/cm^{-1} 3067, 3030, 2963, 2875, 1781, 1731, 1693, 1611, 1520, 1444, 1373, 1209, 1160, 1115, 1000, 798, 762, 716; MS (EI): m/z (%) = 325 ([M]⁺, 20), 299 (100), 294 ([M - OCH₃]⁺, 8), 266 ([M - COOCH₃]⁺, 10); HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₉H₁₉NNaO₄: 348.1206; found: 348.1207.

3-(3-chlorophenyl)-5-methoxycarbonyl-2(3*H*)-benzoxazolone (4q).

White solid; yield: 0.25 g (84 %); mp 145-147 °C; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.86$ (dd, J = 8.4, 1.6 Hz, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.58-7.70 (m, 4H), 7.47 (d, J = 1.6 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 165.4$ (C=O), 152.2 (C=O), 145.5, 134.1, 133.9, 131.5, 131.4, 128.9, 126.0, 125.6, 125.1, 124.6, 110.3, 109.3, 52.4; IR (KBr) v_{max}/cm^{-1} 3125, 3093, 3063, 2959, 1798, 1725, 1623, 1594, 1496, 1459, 1437, 1383, 1293, 1265, 1149, 1094, 1008, 868, 783, 709; MS (EI): m/z (%) = 305 ([M + 2]⁺, 33), 303 ([M]⁺, 100), 272 ([M - OCH₃]⁺, 84), 244 ([M - COOCH₃]⁺, 11); HRMS (ESI-TOF): m/z [M + H]⁺ calcd. for C₁₅H₁₁Cl³⁵NO₄: 304.0371; found: 304.0367.

5-methoxycarbonyl-3-(3-(methoxycarbonyl)phenyl)-2(3*H*)-benzoxazolone (4**r**).

White solid; yield: 0.25 g (76 %); mp > 200 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 8.21 (s, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.95 (d, J = 0.8 Hz, 1H), 7.87(dd, J = 8.4, 1.6

Hz, 1H), 7.79 (t, J = 8.0 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 1.2 Hz, 1H), 3.89 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 165.4$ (C=O), 165.3 (C=O), 152.3 (C=O), 145.6, 133.3, 131.6, 131.3, 130.5, 130.5, 129.3, 126.6, 125.5, 125.0, 110.2, 109.1, 52.5, 52.3; IR (KBr) v_{max}/cm^{-1} 3095, 3077, 3060, 3005, 2958, 2845, 1779, 1713, 1623, 1587, 1492, 1349, 1281, 1243, 1110, 1016, 890, 755, 697; MS (EI): m/z (%) = 327 ([M]⁺, 100), 296 ([M - OCH₃]⁺, 82), 268 ([M - COOCH₃]⁺, 4); HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₇H₁₃NaO₆: 350.0635; found: 350.0640.

3-(3-(trifluoromethyl)phenyl)-5-methoxycarbonyl-2(3H)-benzoxazolone (4s).

White solid; yield: 0.25 g (75 %); mp 128-130 °C; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.08$ (s, 1H), 7.99 (d, J = 7.6 Hz, 1H), 7.86-7.93 (m, 3H), 7.60 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 1.6 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 165.4$ (C=O), 152.2 (C=O), 145.5, 133.7, 131.4, 131.2, 130.6 (q, ²*J*_{CF} = 32.1 Hz, C-b), 130.0, 125.6, 125.5 (q, ³*J*_{CF} = 3.4 Hz), 125.1, 123.0 (q, ³*J*_{CF} = 3.4 Hz), 122.2 (q, ¹*J*_{CF} = 271.2 Hz, C-a), 110.2, 109.2, 52.3; IR (KBr) ν_{max} /cm⁻¹ 3086, 3056, 3018, 2964, 1787, 1720, 1625, 1503, 1460, 1435, 1387, 1329, 1294, 1260, 1182, 1116, 882, 765, 700; MS (EI): m/z (%) = 337 ([M]⁺, 90), 306 ([M - OCH₃]⁺, 100), 278 ([M - COOCH₃]⁺, 15); HRMS (ESI-TOF): *m*/z [M + Na]⁺ calcd for C₁₆H₁₀F₃NNaO₄: 360.0454; found: 360.0460.

5-methoxycarbonyl-3-(3-methylphenyl)-2(3H)-benzoxazoone (4t).

White solid; 0.26 g (93 %); mp 114-116 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.84 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.51 (t, *J* = 8.0 Hz 1H), 7.40-7.44 (m, 3H), 7.35 (d, *J* = 7.6 Hz, 1H), 3.81 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 165.4 (C=O), 152.3 (C=O), 145.5, 139.6, 132.6, 131.7, 129.7, 129.5, 126.2, 125.5, 124.9, 122.8, 110.1, 109.2, 52.3, 20.8; IR (KBr) *v*_{max}/cm⁻¹ 3073, 3002, 2955, 2924, 2848, 1776, 1712, 1623, 1606, 1590, 1499, 1457, 1384, 1283, 1247, 1087, 999, 887, 763, 702; MS (EI): m/z (%) = 283 ([M]⁺, 100), 252 ([M - OCH₃]⁺, 54), 224 ([M - COOCH₃]⁺, 7); HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₁₆H₁₄NO₄: 284.0917; found: 284.0920.

3-(3-nitrophenyl)-5-methoxycarbonyl-2(3H)-benzoxazolone (4u).

Yellow solid; 0.26 g (82 %); mp > 200 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.53$ (t, J = 2.0 Hz, 1H), 8.35-8.39 (m, 1H), 8.12-8.15 (m, 1H), 7.93 (t, J = 8.0 Hz, 1H), 7.88 (dd, J = 8.4, 1.6 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 1.6 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 165.7$ (C=O), 152.4 (C=O), 148.7, 145.8, 134.1, 132.5, 131.6, 131.4, 125.8, 125.5, 123.7, 121.2, 110.5, 109.6, 52.6; IR (KBr) v_{max} /cm⁻¹ 3132, 3102, 2999, 2952, 1780, 1710, 1621, 1536, 1494, 1439, 1373, 1297, 1258, 1151, 1094, 885, 767, 701; MS (EI): m/z (%) = 314 ([M]⁺, 100), 283 ([M - OCH₃]⁺, 90), 255 ([M - COOCH₃]⁺, 6); HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₀N₂NaO₆ : 337.0431; found: 337.0431.

5-methoxycarbonyl-3-(naphthalen-1-yl)-2(3*H*)-benzoxazolone (4v).

Yellow solid; 0.26 g (80 %); mp 120-122 °C; ¹H NMR (400 MHz, DMSO-*d₆*): $\delta = 8.23$ (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.87-7.91 (m, 2H), 7.73-7.80 (m, 2H), 7.65-7.69 (m, 2H), 7.57-7.61 (m, 1H), 7.02 (d, J = 1.2 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d₆*): $\delta = 165.3$ (C=O), 152.8 (C=O), 146.0, 134.1, 132.9, 130.4, 129.0, 128.7, 128.5, 127.7, 127.1, 126.8, 126.1, 125.6, 124.9, 122.2, 110.3, 109.1, 52.2; IR (KBr) v_{max} /cm⁻¹ 3058, 3000, 2953, 2846, 1790, 1723, 1621, 1599, 1511, 1492, 1455, 1373, 1291, 1247, 1148, 1047, 800, 773; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd for C₁₉H₁₄NO₄: 320.0917; found: 320.0922.

3-((diphenylmethylene)amino))-5-methoxycarbonyl-2(3*H*)-benzoxazolone (**4w**). White solid; 0.29 g (78 %); mp 119-121 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.82 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.66-7.74 (m, 4H), 7.53-7.57 (m, 2H), 7.40-7.57 (m, 4H), 7.29-7.31 (m, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 178.6 (C=O), 165.4 (C=O), 147.7, 144.1, 135.3, 133.6, 132.6, 130.5, 130.2, 129.5, 128.7, 128.5, 127.7, 125.9, 124.9, 110.2, 109.7, 52.3; IR (KBr) *v*_{max}/cm⁻¹ 3056, 3032, 3007, 2957, 2848, 1787, 1717, 1620, 1560, 1490, 1460, 1366, 1288, 1244, 1093, 1003, 763, 695; MS (EI): m/z (%) = 372 ([M]⁺, 28), 341 ([M - OCH₃]⁺, 4), 180 (100); HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₂₂H₁₇N₂O₄: 373.1183; found: 373.1185.

3-(4'-chloro-[1,1'-biphenyl]-4-yl)-5-methoxycarbonyl-2(3*H*)-benzoxazolone (4**x**). White solid; 0.34 g (90 %); mp 187-189 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 7.94 (d, J = 8.4 Hz, 2H), 7.88 (dd, J = 8.4, 1.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.75(d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 1.2 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : ppm 165.5 (C=O), 152.4 (C=O), 145.6, 139.1, 137.8, 132.9, 132.4, 131.6, 129.0, 128.7, 128.1, 126.3, 125.6, 125.0, 110.3, 109.3, 52.4; IR (KBr) v_{max} /cm⁻¹ 3042, 2960, 1786, 1719, 1620, 1522, 1490, 1459, 1383, 1286, 1241, 1092, 1007, 810, 762; HRMS: (ESI-TOF) m/z [M + H]⁺ calcd. for C₂₁H₁₅CINO₄: 380.0684; found: 380.0681.

Methyl-3-chloro-11-oxo-5,11-dihydrodibenzo[b,e][1,4]oxazepine-7-carboxylate(I).

Yellow solid; 0.25 g (82 %); mp >200 °C; ¹HNMR (400 MHz, DMSO-*d*₆) : δ = 9.33 (s, 1H), 7.87 (d, *J* = 8.8 Hz , 1H), 7.83 (d, *J* = 2.4 Hz, 1H), 7.64 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.30 (d, *J* = 8.4 Hz ,1H), 7.24 (d, *J* = 2.0 Hz ,1H), 6.99 (dd, *J* = 8.4, 2.0 Hz, 1H), 3.84 (s, 3H) ; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : ppm 165.1 (C=O), 163.3 (C=O), 149.6, 145.1, 139.8, 136.7, 136.3, 127.5, 125.1, 122.5, 121.2, 120.5, 118.4, 114.2, 52.3; IR (KBr) ν_{max} /cm⁻¹ 3313, 3079, 3038, 3010, 2963, 2921, 1725, 1698, 1617, 1600, 1536, 1509, 1477, 1436, 1409, 1281, 1211, 1025, 1021, 766; MS (EI): m/z (%) = 303 ([M]⁺, 16), 272 ([M - OCH₃]⁺, 36), 244 ([M - COOCH₃]⁺, 22); HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd for C₁₅H₁₁CINO₄: 304.0371; found: 304.0366.

IV ¹H-NMR and ¹³C-NMR spectra of compounds 4a -4x and I

[¹H NMR and ¹³C NMR spectrum of 4a in DMSO-d₆]

13CNMR spectrum of sample B-ZESM269

[¹H NMR and ¹³C NMR spectrum of 4b in DMSO-d₆]

1HNMR spectrum of sample B-ZESM229

[¹H NMR and ¹³C NMR spectrum of 4c in DMSO-d₆]

1HNMR spectrum of sample B-ZESM283

13CNMR spectrum of sample B-ZESpM283

,

[¹H NMR and ¹³C NMR spectrum of 4d in DMSO-d₆]

1HNMR spectrum of sample B-ZESM395

>

I

13CNMR spectrum of sample B-ZESpM348

[¹H NMR and ¹³C NMR spectrum of 4f in DMSO-d₆]

1HNMR spectrum of sample B-ZESM303b

1HNMR spectrum of sample B-ZESM287

[¹H NMR and ¹³C NMR spectrum of 4h in DMSO-d₆]

13CNMR spectrum of sample B-ZESpM311

[¹H NMR and ¹³C NMR spectrum of 4i in DMSO-d₆]

1HNMR spectrum of sample B-ZESM314

1HNMR spectrum of sample B-ZESM314

13CNMR spectrum of sample B-ZESpM314

,

[¹H NMR and ¹³C NMR spectrum of 4j in DMSO-d₆]

13CNMR spectrum of sample B-ZESOM283

[¹H NMR and ¹³C NMR spectrum of 4k in DMSO-d₆]

1HNMR spectrum of sample B-ZESoM303

1HNMR spectrum of sample B-ZESoM303

[¹H NMR and ¹³C NMR spectrum of 4l in DMSO-d₆]

1HNMR spectrum of sample B-ZESM299B

13CNMR spectrum of sample B-ZESOM299

[¹H NMR and ¹³C NMR spectrum of 4m in DMSO-d₆]

[¹H NMR and ¹³C NMR spectrum of 4n in DMSO-d₆]

1HNMR spectrum of sample B-ZESM311B

13CNMR spectrum of sample B-ZESM311

[¹H NMR and ¹³C NMR spectrum of 40 in DMSO-d₆]

[¹H NMR and ¹³C NMR spectrum of 4q in DMSO-d₆]

1HNMR spectrum of sample B-ZESmM303

[¹H NMR and ¹³C NMR spectrum of 4r in DMSO-d₆]

1HNMR spectrum of sample B-ZESM327

[¹H NMR and ¹³C NMR spectrum of 4t in DMSO-d₆]

1HNMR spectrum of sample B-ZESM283C

1HNMR spectrum of sample B-ZESM283C

49

[¹H NMR and ¹³C NMR spectrum of 4u in DMSO-d₆]

1HNMR spectrum of sample B-ZESmM314

13CNMR spectrum of sample B-ZESMM314

[¹H NMR and ¹³C NMR spectrum of 4v in DMSO-d₆]

1HNMR spectrum of sample B-ZESM319

[¹H NMR and ¹³C NMR spectrum of 4w in DMSO-d₆]

1HNMR spectrum of sample B-ZESM372B

13CNMR spectrum of sample B-ZESM327B

[¹H NMR and ¹³C NMR spectrum of 4x in DMSO-d₆]

1HNMR spectrum of sample B-ZESM379

[¹H NMR and ¹³C NMR spectrum of I in DMSO-d₆]

1HNMR spectrum of sample B-ZESM303

13CNMR spectrum of sample B-ZESM303

