Electronic supplementary information for

Relationship between crosslinking and ordering for the fabrication of soft templated (FDU-16) mesoporous carbon thin films

Yuanzhong Zhang, Zhe Qiang, and Bryan D. Vogt

Department of Polymer Engineering, University of Akron, Akron, OH 44325

Figure S1. Temporal evolution of the FTIR spectra for (a) resol, (b) FDU-16 films at 100 °C and when crosslinking at 140 °C for (c) resol and (d) FDU-16 films.

Table S1. FTIR bands assignment (Full)					
Wavenumber of observed peak centers	Functional group				
or bands (cm ⁻¹)					
1740-1590 (doublet)	C=O substitution on aromatic ring ³⁰				
1625-1590	aromatic C=C stretching vibration due to				
	asymmetric substitution ³⁰				
1511	aromatic C=C stretching in 1,4 or 1,2,4				
	substituted benzene ring ³⁰				
1484	aromatic C=C stretching ²⁸				
1460	CH_2 deformation vibration in -CH ₂ -OH ³⁰				
1410-1310	COH bending vibration of phenol ³⁰				
1374	-CH2- symmetric deformation in F127 ³¹				
1360	-CH2- wag, C-C stretching in F127 ³¹				
1343	-CH2- wag in F127 ³¹				
1260-1180	CO stretching of phenol ³⁰				
1175-1150	CO stretching of o- and p- alkyl phenols ³⁰				
1149	C-O-C stretching and C-C stretching in F127 ³¹				
1113	C-O-C stretching in F127 ³¹				
1070-1050	C-O-C stretching in both phenolic resin and				
	F127 ³¹				
1028; 1011; 995	δ(O-H)v(C-O) vibration of 2, 4, 6-				
	trihydroxymethylphenol ²⁹				
1020; 996; 990	δ(O-H)v(C-O) vibration of 2, 4-				
	dihydroxymethylphenol ²⁹				
1010	δ(O-H)v(C-O) vibration of 2, 6-				
	dihydroxymethylphenol ²⁹				
1003; 995	δ (O-H)v(C-O) vibration in primary alcohol of 2-				
	hydroxymethylphenol ²⁹				
991	δ(O-H)v(C-O) vibration of 4-				
	hydroxymethylphenol ²⁹				
963	CH2 rock ³¹				
947	CH2 rock and C-O-C stretching ³¹				
890	aromatic =C-H out-of-plane deformation				
	vibration, 2, 4, 6- substituted phenol ³⁰				
830	4- or 2, 4- substituted phenol ³⁰				
756	2- substituted phenol ³⁰				

Figure S2. Integral fitting of resol (a,b) and FDU-16 (c, d) at 100 °C to (a,c) the Jander model and (b, d) 1st order reaction model.

Figure S3. Integral fitting of resol (a,b) and FDU-16 (c, d) at 120 °C to (a,c) the Jander model and (b, d) 1st order reaction model

Figure S4. Integral fitting of resol (a,b) and FDU-16 (c, d) at 140 °C to (a,c) the Jander model and (b, d) 1st order reaction model

Figure S5. Integral fitting of resol (a,b) and FDU-16 (c, d) at 160 °C to (a,c) the Jander model and (b, d) 1st order reaction model

Table S2.	Details	of integral	fitting	result
-----------	---------	-------------	---------	--------

	INTERCEPT	SLOPE (rate constant)	ADJ. R ²	FITTING RANGE (MAXIMUM)
100 °C				
RESOL (JANDER)	-6.21X10 ⁻⁴	6.38X10 ⁻⁴	0.977	2-180 min
RESOL (1 st ORDER)	0.143	0.00782	0.973	2-180 min
FDU-16 (JANDER)	-4.20X10 ⁻⁴	4.51X10 ⁻⁴	0.977	2-300 min
FDU-16 (1 st ORDER)	0.143	0.0049	0.905	2-300 min
120 °C				
RESOL (JANDER)	-2.31X10 ⁻⁴	0.00237	0.950	0.5-60 min
RESOL (1 st ORDER)	0.153	0.0221	0.868	0.5-60 min
FDU-16 (JANDER)	4.64X10 ⁻⁴	0.0024	0.995	0.5-60 min
FDU-16 (1 st ORDER)	0.179	0.0254	0.913	0.5-60 min
140 °C				
RESOL (JANDER)	-0.00238	0.0194	0.981	0.5-10 min
RESOL (1 st ORDER)	0.269	0.156	0.914	0.5-10 min
FDU-16 (JANDER)	3.38X10 ⁻⁴	0.01311	0.971	0.5-6 min
FDU-16 (1 st ORDER)	0.198	0.142	0.911	0.5-6 min
160 °C				
RESOL (JANDER)	-0.00911	0.06867	0.972	0.5-3 min
RESOL (1 st ORDER)	0.279	0.524	0.940	0.5-3 min
FDU-16 (JANDER)	0.00295	0.0498	0.971	0.5-1.5 min
FDU-16 (1 st ORDER)	0.363	0.413	0.800	0.5-1.5 min

Figure S6. In-situ ellipsometry data of normalized film thickness at (a) 100 °C (b) 120 °C (c) 140 °C (d) 160 °C.

Figure S7. Ellipsometric angles (Ψ , Δ) and fitting at incident angle of 70 ° for mesoporous carbon based on FDU-16 using (a) standard heating protocol of 120 °C for 24 h and (b) accelerated heating of 100 °C for 1.5 h and then 160 °C for 1.5 h. Both films are carbonized at 800 °C. The dashed lines indicate the recursive fit to the data.

Figure S8. Refractive index of mesoporous carbon films as determined from ellipsometry shown in Figure S7.