Supporting information

Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applications

Zhanna A. Boeva^{1,2,*}, Konstantin A. Milakin², Markus Pesonen³, Aleksander N. Ozerin⁴, Vladimir G. Sergeyev² and Tom Lindfors^{1,*}

¹ Åbo Akademi University, Process Chemistry Centre, Department of Chemical Engineering, Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku/Åbo, Finland

² M.V. Lomonosov Moscow State University, Polymer Division, Chemistry Department, Leninskie gory 1, build. 3, Moscow, Russian Federation

³ Åbo Akademi University, Department of Natural Sciences and Center for Functional Materials, Physics, Porthansgatan 3, FI-20500 Turku/Åbo, Finland

⁴ Russian Academy of Sciences, Institute of Synthetic Polymeric Materials, 70, Profsoyuznaya street, Moscow, Russian Federation.

Fig. S1. The FTIR-spectra of (a) graphene (< 3 monolayers), (b) exfoliated graphite (30-50 monolayers) (c) neat PANI(ES), (d) PANI(ES)-graphene and (e) PANI(ES)-graphite.

Fig. S2. Raman spectra of (a) graphene (< 3 monolayers), (b) exfoliated graphite (30-50 monolayers), (c) neat PANI(EB) and (d) PANI(EB)-graphene and (e) the PANI(EB)-graphite composites; λ_{exc} : 514 nm.

Graphene	Graphite	PANI(EB)	PANI(EB)- graphene	PANI(EB)- graphite	Assignments	Ref.
(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})		
-	-	-	-	815	Ring symmetric stretching; amine deformation	3
-	-	-	-	1138	C-H in-plane bending (Q)	1, 3
-	-	1164	1169	1180	C-H in-plane bending (B)	1, 3
-	-	-	-	1252	$C-N^+$ · stretching (SQR)	1-3
1344	1347				D-band (defect zones)	4
-	-	1340	1352	1348	$C-N^+$ · stretching (SQR)	1, 5
-	-	1412	1410	1408	C-C stretching (Q)	3
-	-	1478	1473	-	C=N and CH=CH stretching (Q)	1-3, 6
		1557	1561	1562	C-C stretching	3, 6
1579	1570	-	-	-	G-band (doubly degenerate zone centre E_{2g} mode	4

1604

1632

C=C stretching (Q)

C-C stretching (B)

1,3

1-3

1599

1636

_

_

_

_

1606

_

Table S1. Assignments and wavenumbers of the main Raman bands of graphene, graphite, PANI(EB), PANI(EB)-graphene and PANI(EB)-graphite. The benzoid, quinoid and semiquinone radical units are denoted by B, Q and SQR, respectively.

Fig. S3. UV-vis spectra of the PANI-graphite film measured at equilibrium at pH=7.8 and 9.5. The two spectra are overlapping. The composite film was casted onto the tin oxide glass substrate which was coated with a 10 nm thick Pt layer. The pH of the supporting electrolyte (0.1 M NaCl) was adjusting with NaOH either to pH=7.8 or 9.5 and measured with a pH electrode before and after the UV-vis measurement (ca. 1 min).

Fig. S4. Cyclic voltammograms of (1) 10^{-5} M, (2) 10^{-4} M, (3) 10^{-3} M and (4) 10^{-2} M ascorbic acid measured with glassy carbon as the working electrode; Reference electrode: Ag/AgCl/3 M KCl, v=50 mV s⁻¹.

References

- [1] M. Bartonek, N. S. Sariciftci and H. Kuzmany, *Synth. Met.*, 1990, **36**, 83.
- [2] J. Laska, Synth. Met., 2002, **129**, 229.
- [3] K. Berrada, S. Quillard, G. Louarn and S. Lefrant, *Synth. Met.*, 1995, **69**, 201.
- [4] F. Tuinstra and J. L. Koenig, J. Chem. Phys., 1970, 53, 1126.
- [5] J. Laska, R. Girault, S. Quillard, G. Louarn, A. Pron and S. Lefrant, *Synth. Met.*, 1995, 75, 69.
- [6] Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima and T. Kawagoe, *Macromolecules*, 1988, **21**, 1297.